Production and Application of Highly Efficient and Reusable Palladium Nanocatalyst Decorated on the Magnetically Retrievable Chitosan/Activated Carbon Composite Microcapsules

  • Talat BaranEmail author


This study reports (i) the production of magnetically retrievable microcapsules as immobilizing agents, which are composed of chitosan/activated carbon composite (CS-AC/Fe3O4), (ii) the green synthesis of highly stable palladium nanoparticles on CS-AC/Fe3O4 without using any toxic reducing agents (Pd NPs@CS-AC/Fe3O4), (iii) the investigation of catalytic behavior of Pd NPs@CS-AC/Fe3O4 in Suzuki–Miyaura reactions of different aryl iodides, bromides, and chlorides, and (iv) the examination of recoverability and reusability of Pd NPs@CS-AC/Fe3O4. The characterization of Pd NPs@CS-AC/Fe3O4 was performed by FT-IR, TG/DTG, XRD, SEM, and EDS analyses. It was found that the average sizes of palladium nanoparticles were changed in the range of 31–48 nm. The catalytic tests revealed that Pd NPs@CS-AC/Fe3O4 was a very effective catalyst against synthesis of various biaryl compounds via Suzuki–Miyaura reactions, by giving high reaction yields under mild reaction conditions. Furthermore, it was found that Pd NPs@CS-AC/Fe3O4 was a highly retrievable and practical nanocatalyst due to its reusable nature. Pd NPs@CS-AC/Fe3O4 gave 95% of yield after ten successive cycles. These results show that Pd NPs@CS-AC/Fe3O4 is a superb catalyst and it can be applied in different catalytic systems or industrial applications due to the fact that it offers notable advantages such as high catalytic performance, reusability, stability, excellent functional group tolerance, wide substrate scope, and simple separation.

Graphical Abstract


Chitosan Activated carbon Palladium nanocatalyst Suzuki reaction 



  1. 1.
    Ronson TO, Taylor RJ, Fairlamb IJ (2015) Tetrahedron 7(71):989–1009CrossRefGoogle Scholar
  2. 2.
    Nasrollahzadeh M, Sajadi SM, Maham M (2015) J Mol Catal A 396:297–303CrossRefGoogle Scholar
  3. 3.
    Sedighipoor M, Kianfar AH, Mohammadnezhad G, Görls H, Plass W (2018) Inorg Chim Acta 476:20–26CrossRefGoogle Scholar
  4. 4.
    Farzad E, Veisi H (2018) J Ind Eng Chem 60:114–124CrossRefGoogle Scholar
  5. 5.
    Veisi H, Najafi S, Hemmati S (2018) Int J Biol Macromol 113:186–194CrossRefGoogle Scholar
  6. 6.
    Karanjit S, Kashihara M, Nakayama A, Shrestha LK, Ariga K, Namba K (2018) Tetrahedron 74(9):948–954CrossRefGoogle Scholar
  7. 7.
    Duan X, Liu J, Hao J, Wu L, He B, Qiu Y, He Z, Xi J, Wang S (2018) Carbon 130:806–813CrossRefGoogle Scholar
  8. 8.
    Abbas Khakiani B, Pourshamsian K, Veisi HA (2015) Appl Organomet Chem 29(5):259–265CrossRefGoogle Scholar
  9. 9.
    Hemmati S, Mehrazin L, Pirhayati M, Veisi H (2019) Polyhedron 158:414–422CrossRefGoogle Scholar
  10. 10.
    Veisi H, Biabri PM, Falahi H (2017) Tetrahedron lett 58(35):3482–3486CrossRefGoogle Scholar
  11. 11.
    Camacho-Espinoza M, Penieres-Carrillo JG, Rios-Guerra H, Lagunas-Rivera S, Ortega-Jiménez F (2019) J Organomet Chem 880:386–391CrossRefGoogle Scholar
  12. 12.
    Kaboudin B, Salemi H, Mostafalu R, Kazemi F, Yokomatsu T (2016) J Organomet Chem 818:1951–1959CrossRefGoogle Scholar
  13. 13.
    Chen L, Gao Z, Li Y (2015) Catal Today 245:122–128CrossRefGoogle Scholar
  14. 14.
    Pourjavadi A, Motamedi A, Marvdashti Z, Hosseini SH (2017) Catal Commun 97:27–31CrossRefGoogle Scholar
  15. 15.
    Veisi H, Ghorbani-Vaghei R, Hemmati S, Aliani MH, Ozturk T (2015) Appl Organomet Chem 29(1):26–32CrossRefGoogle Scholar
  16. 16.
    Lebaschi S, Hekmati M, Veisi H (2017) J Colloid Interface Sci 485:223–231CrossRefGoogle Scholar
  17. 17.
    Fakhri P, Nasrollahzadeh M, Jaleh B (2014) RSC Adv 4(89):48691–48697CrossRefGoogle Scholar
  18. 18.
    Polshettiwar V, Molnár Á (2007) Tetrahedron 63(30):6949–6976CrossRefGoogle Scholar
  19. 19.
    Mulahmetovic E, Hargaden G (2017) Rev J Chem 7(4):373–398CrossRefGoogle Scholar
  20. 20.
    Baran T, Sargın İ, Kaya M, Mulerčikas P, Kazlauskaitė S, Menteş A (2018) Chem Eng J 331:102–113CrossRefGoogle Scholar
  21. 21.
    Khazaei A, Khazaei M, Nasrollahzadeh M (2017) Tetrahedron 73(38):5624–5633CrossRefGoogle Scholar
  22. 22.
    Cui X, Zuo W, Tian M, Dong Z, Ma J (2016) J Mol Catal A 423:386–392CrossRefGoogle Scholar
  23. 23.
    Augustine RL, O’Leary ST (1995) J Mol Catal A 95(3):277–285CrossRefGoogle Scholar
  24. 24.
    Veisi H, Manesh AA, Eivazi N, Faraji AR (2015) RSC Adv 5(26):20098–20107CrossRefGoogle Scholar
  25. 25.
    Byun J-W, Lee Y-S (2004) Tetrahedron Lett 45(9):1837–1840CrossRefGoogle Scholar
  26. 26.
    Zhang Z, Wang Z (2006) J Org Chem 71(19):7485–7487CrossRefGoogle Scholar
  27. 27.
    Sin E, Yi S-S, Lee Y-S (2010) J Mol Catal A 315(1):99–104CrossRefGoogle Scholar
  28. 28.
    Guibal E (2005) Prog Polym Sci 30(1):71–109CrossRefGoogle Scholar
  29. 29.
    Zeng M, Zhang X, Shao L, Qi C, Zhang X-M (2012) J Organomet Chem 704:29–37CrossRefGoogle Scholar
  30. 30.
    Fang B, Wei YZ, Kumagai M (2006) J Power Sources 155(2):487–491CrossRefGoogle Scholar
  31. 31.
    Liu Y, Miao X, Zhu J, Zhang Z, Cheng Z, Zhu X (2012) Macromol Chem Phys 213(8):868–877CrossRefGoogle Scholar
  32. 32.
    Makhubela BC, Jardine A, Smith GS (2011) Appl Catal A 393(1–2):231–241CrossRefGoogle Scholar
  33. 33.
    Baran T, Sargin I, Kaya M, Menteş A, Ceter T (2017) J Colloid Interf Sci 486:194–203CrossRefGoogle Scholar
  34. 34.
    Veisi H, Pirhayati M, Kakanejadifard A (2017) Tetrahedron Lett 58(45):4269–4276CrossRefGoogle Scholar
  35. 35.
    Nasrollahzadeh M, Issaabadi Z, Sajadi SM (2018) Sep Purif Technol 197:253–260CrossRefGoogle Scholar
  36. 36.
    Veisi H, Kakanejadifard A (2016) RSC Adv 6(32):27252–27259CrossRefGoogle Scholar
  37. 37.
    Faria VW, Oliveira DG, Kurz MH, Gonçalves FF, Scheeren CW, Rosa GR (2014) RSC Adv 4(26):13446–13452CrossRefGoogle Scholar
  38. 38.
    Du Q, Zhang W, Ma H, Zheng J, Zhou B, Li Y (2012) Tetrahedron 68(18):3577–3584CrossRefGoogle Scholar
  39. 39.
    Han D, Zhang Z, Bao Z, Xing H, Ren Q (2018) Front Chem Sci Eng 12(1):24–31CrossRefGoogle Scholar
  40. 40.
    Hajipour AR, Kalantari Tarrari M, Jajarmi S (2018) Appl Organomet Chem 32(3):e4171CrossRefGoogle Scholar
  41. 41.
    Heidari F, Hekmati M, Veisi HM (2017) J Colloid Interf Sci 501:175–184CrossRefGoogle Scholar
  42. 42.
    Nasrollahzadeh M, Mohammad Sajadi S, Rostami-Vartooni A, Khalaj M (2015) J Mol Catal A 396:31–39CrossRefGoogle Scholar
  43. 43.
    Veisi H, Ghadermazi M, Naderi A (2016) Appl Organomet Chem 30(5):341–345CrossRefGoogle Scholar
  44. 44.
    Sobhani S, Zeraatkar Z, Zarifi F (2015) New J Chem 39(9):7076–7085CrossRefGoogle Scholar
  45. 45.
    Sarkar SM, Rahman ML, Yusoff MM (2015) RSC Adv 5(2):1295–1300CrossRefGoogle Scholar
  46. 46.
    Hajipour AR, Tadayoni NS, Khorsandi Z (2016) Appl Organomet Chem 30(7):590–595CrossRefGoogle Scholar
  47. 47.
    Tamami B, Ghasemi S (2010) J Mol Catal A 322(1–2):98–105CrossRefGoogle Scholar
  48. 48.
    Veisi H, Ghorbani M, Hemmati S (2019) Mater Sci Eng C 98:584–593CrossRefGoogle Scholar
  49. 49.
    Veisi H, Mirshokraie SA, Ahmadian H (2018) Int J Biol Macromol 108:419–425CrossRefGoogle Scholar
  50. 50.
    Anasdass JR, Kannaiyan P, Raghavachary R, Gopinath SC, Chen Y (2018) PLoS ONE 13(2):e0193281CrossRefGoogle Scholar
  51. 51.
    Ghorbani-Choghamarani A, Tahmasbi B, Noori N, Faryadi S (2017) Cr Chim 20(2):132–139CrossRefGoogle Scholar
  52. 52.
    Yu L, Han Z (2016) Mater Lett 184:312–314CrossRefGoogle Scholar
  53. 53.
    Boruah PR, Gehlot PS, Kumar A, Sarma D (2018) Mol Catal 461:54–59CrossRefGoogle Scholar
  54. 54.
    Esmaeilpour M, Sardarian AR, Firouzabadi H (2018) J Organomet Chem 873:22–34CrossRefGoogle Scholar
  55. 55.
    Wang X, Hu P, Xue F, Wei Y (2014) Carbohydr Polym 114:476–483CrossRefGoogle Scholar
  56. 56.
    Yılmaz Baran N, Baran T, Menteş A (2018) Carbohydr Polym 181:596–604CrossRefGoogle Scholar
  57. 57.
    Paul D, Rudra S, Rahman P, Khatua S, Pradhan M, Chatterjee PN (2018) J Organomet Chem 871:96–102CrossRefGoogle Scholar
  58. 58.
    Kandathil V, Koley TS, Manjunatha K, Dateer RB, Keri RS, Sasidhar BS, Patil AS, Patil AS (2018) Inorgan Chim Acta 478:195–210CrossRefGoogle Scholar
  59. 59.
    Puthiaraj P, Ahn W-S (2015) Catal Commun 65:91–95CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of Science and LettersAksaray UniversityAksarayTurkey

Personalised recommendations