Superacidic Mesoporous Catalysts Containing Embedded Heteropolyacids

  • Anastasia Kuvayskaya
  • Saul Garcia
  • Ray Mohseni
  • Aleksey VasilievEmail author


Superacidic mesoporous silica materials containing embedded heteropolyacids (HPAs) were synthesized by sol–gel method in acidic media. In these materials, HPAs were immobilized into the silica structure covalently. The most acidic materials were obtained at the use of Pluronic P123 as a non-ionic pore-forming agent. Ionic surfactants also formed mesoporous structures, however, their interaction with HPA reduced acidity of the products. Obtained materials were tested as heterogeneous catalysts in liquid-phase alkylation of 1,3,5-trimethylbenzene by 1-decene. The most effective catalyst demonstrated higher conversion of starting substances to long-chain isomeric alkylbenzenes as compared to the activity of zeolite HY, a well-known alkylation catalyst. No leaching of HPA from silica gel was observed after the alkylation.

Graphical Abstract


Heterogeneous catalysis Alkylation Aromatic compounds Embedding Heteropoly acids Mesoporous materials Sol–gel Surfactants 



Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund for support of this research (Grant PRF # 58891-URS).


  1. 1.
    Meriaudeau P, Ben Taarit Y, Thangaraj A, Almeida JLG, Naccache C (1997) Catal Today 38:243CrossRefGoogle Scholar
  2. 2.
    Wang J-J, Chuang Y-Y, Hsu H-Y, Tsai T-C (2017) Catal Today 298:109CrossRefGoogle Scholar
  3. 3.
    Zhao Z, Qiao W, Wang G, Li Z, Cheng L (2006) J Mol Catal A 250:50CrossRefGoogle Scholar
  4. 4.
    Da Z, Hana Z, Magnoux P, Guisnet M (2001) Appl Catal A 219:45CrossRefGoogle Scholar
  5. 5.
    Awate SV, Waghmode SB, Agashe MS (2004) Catal Commun 5:407CrossRefGoogle Scholar
  6. 6.
    Faghihian H, Mohammadi MH (2014) Appl Clay Sci 93–94:1CrossRefGoogle Scholar
  7. 7.
    Liu Y, Zhou Y, Sheng X, Wang B, Zhu Z, Nan Q (2018) Energy Fuels 32:9763CrossRefGoogle Scholar
  8. 8.
    Xin H, Wu Q, Han M, Wang D, Jin Y (2005) Appl Catal A 292:354CrossRefGoogle Scholar
  9. 9.
    Qiao K, Deng Y (2001) J Mol Catal A 171:81CrossRefGoogle Scholar
  10. 10.
    He Y, Zhang Q, Zhan X, Cheng D, Chen F (2017) Chin J Chem Eng 25:1533CrossRefGoogle Scholar
  11. 11.
    Burrington JD (2016) Industrial catalysis: chemistry and mechanism. World Scientific, SingaporeCrossRefGoogle Scholar
  12. 12.
    Kozhevnikov IV (1998) Chem Rev 98:171CrossRefGoogle Scholar
  13. 13.
    Misono M, Ono I, Koyano G, Aoshima A (2000) Pure Appl Chem 72:1305CrossRefGoogle Scholar
  14. 14.
    Kumar GS, Vishnuvarthan M, Palanichamy M, Murugesan V (2006) J Mol Catal A 260:49CrossRefGoogle Scholar
  15. 15.
    Wang J, Zhu HO (2004) Catal Lett 93:209CrossRefGoogle Scholar
  16. 16.
    Ajaikumar S, Pandurangan A (2008) J Mol Catal A 286:21CrossRefGoogle Scholar
  17. 17.
    Xia QH, Hidajat K, Kawi S (2002) J Catal 209:433CrossRefGoogle Scholar
  18. 18.
    Juan JC, Zhang JC, Yarmo MA (2007) J Mol Catal A 267:265CrossRefGoogle Scholar
  19. 19.
    Jermy BR, Pandurangan A (2005) Appl Catal A 295:185CrossRefGoogle Scholar
  20. 20.
    Hoo P-Y, Abdullah AZ (2014) Chem Eng J 250:274CrossRefGoogle Scholar
  21. 21.
    Wu M, Zhang X, Su X, Li X, Zheng X, Guan X, Liu P (2016) Catal Commun 85:66CrossRefGoogle Scholar
  22. 22.
    Dong B-B, Zhang B-B, Wu H-Y, Li S-D, Zhang K, Zheng X-C (2013) Microporous Mesoporous Mater 176:186CrossRefGoogle Scholar
  23. 23.
    Chen Y, Cao Y, Zheng G-P, Dong B-B, Zheng X-C (2014) Adv Powder Technol 25:1351CrossRefGoogle Scholar
  24. 24.
    Da Silva MJ, Liberto NA (2016) Curr Org Chem 20:1263CrossRefGoogle Scholar
  25. 25.
    Okuhara T, Nishimura T, Misono M (1996) In: Hightower JW, Delgass WN, Iglesia E, Bell AT (eds) Studies in surface science and catalysis, vol. 101. Elsevier, Amsterdam, p 581.Google Scholar
  26. 26.
    Yang L, Qi YT, Yuan XD, Shen H, Kim J (2005) J Mol Catal A 229:199CrossRefGoogle Scholar
  27. 27.
    Shi CF, Wang RW, Zhu GS, Qiu SL, Long J (2005) Eur J Inorg Chem 2005:4801Google Scholar
  28. 28.
    Adetola O, Little I, Mohseni R, Molodyi D, Bohvan S, Golovko L, Vasiliev A (2017) J Sol-Gel Sci Technol 81:205CrossRefGoogle Scholar
  29. 29.
    Seaton K, Little I, Tate C, Mohseni R, Roginskaya M, Povazhniy V, Vasiliev A (2017) Microporous Mesoporous Mater 244:55CrossRefGoogle Scholar
  30. 30.
    Okuhara T, Tatematsu S, Lee KY, Misono M (1989) Bull Chem Soc Jpn 62:717CrossRefGoogle Scholar
  31. 31.
    Holclajtner-Antunović I, Bajuk-Bogdanović D, Todorović M, Mioč UB, Zakrzewska J, Uskoković-Marković S (2008) Can J Chem 86:996CrossRefGoogle Scholar
  32. 32.
    Okuhara T, Nishimura T, Watanabe H, Misono M (1992) J Mol Catal 74:247CrossRefGoogle Scholar
  33. 33.
    Jewett JR, Jensen L (2000) Assessment of Available particle size data to support an analysis of the waste feed delivery system transfer system, Report RPP-6247. U.S. Department of Energy, Washington, DCCrossRefGoogle Scholar
  34. 34.
    Jörke A, Kohls E, Triemer S, Seidel-Morgenstern A, Hamel C, Stein M (2016) Chem Eng Process Process Intensif 102:229CrossRefGoogle Scholar
  35. 35.
    Deshmukh ARAS, Gumaste VK, Bhawal BM (2000) Catal Lett 64:247CrossRefGoogle Scholar
  36. 36.
    Dimitratos N, Védrine JC (2003) Appl Catal A 256:251CrossRefGoogle Scholar
  37. 37.
    Hanif MA, Nisar S, Rashid U (2017) Catal Rev 59:165CrossRefGoogle Scholar
  38. 38.
    Okuhara T, Watanabe H, Nishimura T, Inumaru K, Misono M (2000) Chem Mater 12:2230CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Anastasia Kuvayskaya
    • 1
  • Saul Garcia
    • 1
  • Ray Mohseni
    • 1
  • Aleksey Vasiliev
    • 1
    Email author
  1. 1.Department of ChemistryEast Tennessee State UniversityJohnson CityUSA

Personalised recommendations