Advertisement

Preparation of the Hierarchical Ti-Rich TS-1 via TritonX-100-Assisted Synthetic Strategy for the Direct Oxidation of Benzene

  • Xiaohua Shen
  • Jingjing Wang
  • Miaoqing Liu
  • Mengzhe Li
  • Jianjun LuEmail author
Article
  • 19 Downloads

Abstract

A new route to synthesis hierarchical Ti-rich TS-1 with uniform intracrystalline mesopores, uniform crystal size and the higher Ti content has been developed by using the environmental-friendly and cheap surfactant Triton X-100 as the assisted template agent and (NH4)2CO3 as crystallization-mediating agent. In this way, the surface area and pore volume of the resulting materials can be adjusted by the Triton X-100 content. The catalytic properties of the Nano-size hierarchical Ti-rich TS-1 were investigated by hydroxylation of benzene to phenol with H2O2 as oxidizing agent and deionized water as solvent. Due to the combination of hierarchical pores and high titanium content, the hierarchical Ti-rich TS-1 shows improved catalytic activity in the oxidation of benzene.

Graphical Abstract

Keywords

Triton X-100 Hierarchical Ti-rich TS-1 Hydroxylation of benzene 

Notes

Acknowledgements

The project is supported by Shanxi Province Major Special Program Project Fund of Science and Technology Department (MJH2016-04), Shanxi Province Science Fundation for Youths (201601D202032), China Scholarship Council.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Fukuzumi S, Ohkubo K (2015) ChemInform abstract: one-step selective hydroxylation of benzene to phenol. Cheminform 46(44):836–845CrossRefGoogle Scholar
  2. 2.
    Guodong W, Shuchang W, Bo L, Chunli D et al (2015) Active sites and mechanisms for direct oxidation of benzene to phenol over carbon catalysts. Angew Chem 54(13):4105–4109CrossRefGoogle Scholar
  3. 3.
    Tanev PT, Chibwe M, Pinnavaia TJ (1994) Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds. Nature 368(6469):321–323CrossRefGoogle Scholar
  4. 4.
    Luo Y, Xiong J, Pang C et al (2018) Direct hydroxylation of benzene to phenol over TS-1 catalysts. Catalysts 8(2):49CrossRefGoogle Scholar
  5. 5.
    Guo B, Zhu L, Hu X et al (2011) Nature of vanadium species on vanadium silicalite-1 zeolite and their stability in hydroxylation reaction of benzene to phenol. Catal Sci Technol 1(6):1060–1067CrossRefGoogle Scholar
  6. 6.
    Chen C-h, Xu J-q, Jin M-m et al (2011) Direct synthesis of phenol from benzene on an activated carbon catalyst treated with nitric acid. Chin J Chem Phys 24(3):358–364CrossRefGoogle Scholar
  7. 7.
    Nomiya K, Yanagibayashi H, Nozaki C et al (1996) Hydroxylation of benzene catalyzed by selectively site-substituted vanadium(V) heteropolytungstates in the presence of hydrogen peroxide. J Mol Catal A Chem 114(1):181–190CrossRefGoogle Scholar
  8. 8.
    Zhang J, Tang Y, Li GY et al (2005) Room temperature direct oxidation of benzene to phenol using hydrogen peroxide in the presence of vanadium-substituted heteropolymolybdates. Appl Catal A-Gen 278(2):251–261CrossRefGoogle Scholar
  9. 9.
    Leng Y, Wang J, Zhu D et al (2011) Heteropolyanion-based ionic hybrid solid: a green bulk-type catalyst for hydroxylation of benzene with hydrogen peroxide. Chem Eng J 173(2):620–626CrossRefGoogle Scholar
  10. 10.
    Song S, Yang H, Rao R et al (2010) High catalytic activity and selectivity for hydroxylation of benzene to phenol over multi-walled carbon nanotubes supported Fe3O4 catalyst. Appl Catal A 375(2):265–271CrossRefGoogle Scholar
  11. 11.
    Lyu Y-J, Qi T, Yang H-Q et al (2018) Performance of edges on carbon for the catalytic hydroxylation of benzene to phenol. Catal Sci Technol 8(1):176–186CrossRefGoogle Scholar
  12. 12.
    Zhang L, Liu H-h, Li G-y et al (2012) Continuous flow reactor for hydroxylation of benzene to phenol by hydrogen peroxide. Chin J Chem Phys 25(5):585–591CrossRefGoogle Scholar
  13. 13.
    Li S, Li G, Li G et al (2011) Microporous carbon molecular sieve as a novel catalyst for the hydroxylation of phenol. Microporous Mesoporous Mater 143(1):22–29CrossRefGoogle Scholar
  14. 14.
    Aratani Y, Oyama K, Suenobu T et al (2016) Photocatalytic hydroxylation of benzene by dioxygen to phenol with a cyano-bridged complex containing Fe(II) and Ru(II) incorporated in mesoporous silica-alumina. Inorg Chem 55(12):5780–5786CrossRefGoogle Scholar
  15. 15.
    Zhang J, Tang Y, Xie JQ et al (2005) Study on phenol oxidation with H2O2 catalyzed by Schiff base manganese complexes as mimetic peroxidase. J Serb Chem Soc 70(10):1137–1146CrossRefGoogle Scholar
  16. 16.
    Zhang J, Tang Y, Xie JQ et al (2005) Catalytic oxidation of phenol with H2O2 by metalloporphyrins as peroxidase mimics. React Kinet Catal Lett 85(2):269–276CrossRefGoogle Scholar
  17. 17.
    Jian M, Zhu L, Wang J et al (2006) Sodium metavanadate catalyzed direct hydroxylation of benzene to phenol with hydrogen peroxide in acetonitrile medium. J Mol Catal S-Chem 253(1–2):1–7Google Scholar
  18. 18.
    Taramasso M, Perego G, Notari B (1983) Preparation of porous crystalline synthetic material comprised of silicon and titanium oxidesGoogle Scholar
  19. 19.
    Jiao W, Yue H, Li J et al (2015) Ti-rich TS-1: a highly active catalyst for epoxidation of methallyl chloride to 2-methyl epichlorohydrin. Appl Catal A Gen 491:78–85CrossRefGoogle Scholar
  20. 20.
    Chen L-H, Li X-Y, Rooke JC et al (2012) Hierarchically structured zeolites: synthesis, mass transport properties and applications. J Mater Chem 22(34):17381CrossRefGoogle Scholar
  21. 21.
    Mario G, Clerici PI (1993) Epoxidation of lower olefins with hydrogen peroxide and titanium silicalite. J Catal 140:71CrossRefGoogle Scholar
  22. 22.
    Fan W, Duan RG, Yokoi T et al (2008) Synthesis, crystallization mechanism, and catalytic properties of titanium-rich TS-1 free of extraframework titanium species. J Am Chem Soc 130(31):10150–10164CrossRefGoogle Scholar
  23. 23.
    Blasco T, Corma A, Navarro MT et al (2010) Synthesis, characterization, and catalytic activity of Ti-MCM-41 structures. Cheminform 27(3):65–74CrossRefGoogle Scholar
  24. 24.
    Wu P, Tatsumi T (2002) Postsynthesis, characterization, and catalytic properties in alkene epoxidation of hydrothermally stable mesoporous Ti-SBA-15. Chem Mater 14(4):1657–1664CrossRefGoogle Scholar
  25. 25.
    Bagshaw SA, Renzo FD (1997) Preparation of metal-incorporated MSU mesoporous silica molecular sieves. Ti incorporation via a totally non-ionic route. Cheminform 28(3):2209–2210Google Scholar
  26. 26.
    Soler-Illia GJDAA, Clément S, Bénédicte L et al (2002) Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem Rev 102(11):4093–4138CrossRefGoogle Scholar
  27. 27.
    Chammingkwan P, Hoelderich WF, Mongkhonsi T et al (2009) Hydroxylation of benzene over TS-PQ™ catalyst. Appl Catal A Gen 352(1):1–9CrossRefGoogle Scholar
  28. 28.
    Meng X, Nawaz F, Xiao FS (2009) Templating route for synthesizing mesoporous zeolites with improved catalytic properties. Nano Today 4(4):292–301CrossRefGoogle Scholar
  29. 29.
    Xiang G, An J, Gu J et al (2017) A green template-assisted synthesis of hierarchical TS-1 with excellent catalytic activity and recyclability for the oxidation of 2,3,6-trimethylphenol. Microporous Mesoporous Mater 239:381–389CrossRefGoogle Scholar
  30. 30.
    Schmidt F, Paasch S, Brunner E et al (2012) Carbon templated SAPO-34 with improved adsorption kinetics and catalytic performance in the MTO-reaction. Microporous Mesoporous Mater 164:214–221CrossRefGoogle Scholar
  31. 31.
    Li WC, Lu AH, Palkovits R et al (2005) Hierarchically structured monolithic silicalite-1 consisting of crystallized nanoparticles and its performance in the Beckmann rearrangement of cyclohexanone oxime. J Am Chem Soc 127(36):12595–12600CrossRefGoogle Scholar
  32. 32.
    Wang L, Yin C, Shan Z et al (2009) Bread-template synthesis of hierarchical mesoporous ZSM-5 zeolite with hydrothermally stable mesoporosity. Colloids Surf A Physicochem Eng Asp 340(1):126–130Google Scholar
  33. 33.
    Du S, Li F, Sun Q et al (2016) A green surfactant-assisted synthesis of hierarchical TS-1 zeolites with excellent catalytic properties for oxidative desulfurization. Chem Commun 52(16):3368CrossRefGoogle Scholar
  34. 34.
    Minkee C, Hae Sung C, Rajendra S et al (2006) Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nat Mater 5(9):718–723CrossRefGoogle Scholar
  35. 35.
    Minkee C, Kyungsu N, Jeongnam K et al (2010) Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Cheminform 40(47):246Google Scholar
  36. 36.
    Kyungsu N, Changbum J, Jeongnam K et al (2011) Directing zeolite structures into hierarchically nanoporous architectures. Science 333(6040):328CrossRefGoogle Scholar
  37. 37.
    Narayanan S, Vijaya JJ, Sivasanker S et al (2014) Hierarchical ZSM-5 catalyst synthesized by a Triton X-100 assisted hydrothermal method. Chin J Catal 35(11):1892–1899CrossRefGoogle Scholar
  38. 38.
    Vayssilov G (1997) Structural and physicochemical features of titanium silicalites. Catal Rev 39(3):209–251CrossRefGoogle Scholar
  39. 39.
    Feng Z, Shang H, Jin D et al (2017) High efficient synthesis of methyl ethyl ketone oxime from ammoximation of methyl ethyl ketone over TS-1 in a ceramic membrane reactor. Chem Eng Process Process Intensif 116:1–8CrossRefGoogle Scholar
  40. 40.
    Qi D, Guo Y, Pei W et al (2018) Synthesis of hierarchically porous TS-1 zeolite with excellent deep desulfurization performance under mild conditions. Microporous Mesoporous Mater 264:S1387181118300295Google Scholar
  41. 41.
    Chen L-H, Li X-Y, Tian G et al (2011) Highly stable and reusable multimodal zeolite TS-1 based catalysts with hierarchically interconnected three-level micro-meso-macroporous structure. Angew Chemie-Int Ed 50(47):11156–11161CrossRefGoogle Scholar
  42. 42.
    Zuo Y, Liu M, Hong L et al (2015) Role of supports in the tetrapropylammonium hydroxide treated titanium silicalite-1 extrudates. Ind Eng Chem Res 54(5):1513–1519CrossRefGoogle Scholar
  43. 43.
    Serrano DP, Aguado J et al (2009) Molecular and meso- and macroscopic properties of hierarchical nanocrystalline ZSM-5 zeolite prepared by seed silanization. Chem Mater 21(4):641–654CrossRefGoogle Scholar
  44. 44.
    Serrano DP, Sanz R, Pizarro P et al (2012) Tailoring the properties of hierarchical TS-1 zeolite synthesized from silanized protozeolitic units. Appl Catal A-Gen 435:32–42CrossRefGoogle Scholar
  45. 45.
    Huybrechts DRC, Buskens PL, Jacobs PA (1992) Physicochemical and catalytic properties of titanium silicalites. J Mol Catal 71(1):129–147CrossRefGoogle Scholar
  46. 46.
    Marra GL, Artioli G, Fitch AN et al (2000) Orthorhombic to monoclinic phase transition in high-Ti-loaded TS-1: an attempt to locate Ti in the MFI framework by low temperature XRD. Microporous Mesoporous Mater 40(1):85–94CrossRefGoogle Scholar
  47. 47.
    Lamberti C, Bordiga S, Zecchina A et al (2001) Ti location in the MFI framework of Ti-silicalite-1: a neutron powder diffraction study. J Am Chem Soc 123(10):2204CrossRefGoogle Scholar
  48. 48.
    Zaarour M, Dong B, Naydenova I et al (2014) Progress in zeolite synthesis promotes advanced applications. Microporous Mesoporous Mater 189(7):11–21CrossRefGoogle Scholar
  49. 49.
    Bordiga S, Ricchiardi G, Spoto G et al (1993) ChemInform abstract: acetylene, methylacetylene and ethylacetylene polymerization on H-ZSM5: a spectroscopic study. J Chem Soc Faraday Trans 89(11):1843–1855CrossRefGoogle Scholar
  50. 50.
    Bourlinos AB, Chowdhury SR, Jiang DD et al (2010) Layered organosilicate nanoparticles with liquidlike behavior. Small 1(1):80–82CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Xiaohua Shen
    • 1
  • Jingjing Wang
    • 1
  • Miaoqing Liu
    • 2
  • Mengzhe Li
    • 1
  • Jianjun Lu
    • 3
    Email author
  1. 1.College of Chemistry and Chemical EngineeringTaiyuan University of TechnologyTaiyuanChina
  2. 2.Key Laboratory of Coal Science and TechnologyTaiyuan University of TechnologyTaiyuanChina
  3. 3.College of Textile EngineeringTaiyuan University of TechnologyTaiyuanChina

Personalised recommendations