Advertisement

Effect of Addition of K, Rh and Fe Over Mo/HZSM-5 on Methane Dehydroaromatization Under Non-oxidative Conditions

  • Vaidheeshwar Ramasubramanian
  • Daniel J. Lienhard
  • Hema RamsurnEmail author
  • Geoffrey L. Price
Article

Abstract

Methane dehydroaromatization was studied over a series of K, Rh and Fe promoted 10 wt% Mo/HZSM-5 catalysts with different promoter loadings of 0.5, 1 and 1.5 wt% at 750 °C in a recirculating batch reactor. All the catalysts were reduced in H2 at 750 °C prior to methane activation. K, Rh and Fe- promoted Mo/HZSM-5 catalysts were prepared by sequential impregnation. N-propylamine-temperature programmed desorption confirmed the significant modification in the acidity of the catalyst upon addition of K. Compared to 10 wt% Mo/HZSM-5, the conversion of CH4 remained nearly unchanged for 1 wt% K-promoted catalyst but decreased by ~ 46% for 1 wt% Rh promoted catalyst and by ~ 4.3% for Fe-promoted catalyst after 255 min of reaction. The conversion of CH4 further decreased with increase in K and Rh loading but increased with increase in Fe loading. Compared to Rh and Fe-promoted catalysts, K-promoted catalyst exhibited better selectivity for C6H6 after 255 min of reaction. The temperature programmed oxidation results revealed that K promoted catalyst significantly reduced coking. 1 wt% K added to 10 wt% Mo/HZSM-5 exhibited optimum performance, where the conversion of CH4 was ~ 28%, selectivity of C6H6 was ~ 50% while the selectivity of carbon was ~ 47% after 255 min of reaction.

Graphical Abstract

Keywords

Methane dehydroaromatization Promoters K-Mo/HZSM-5 H2 pretreatment β−Mo2

Notes

Acknowledgements

The financial support from the University of Tulsa (Faculty Development Summer Fellowship) and ACS-PRF (PRF# 56052-DNI9) are gratefully acknowledged. We thank Dr. Winton Cornell, Applied Associate Professor, The University of Tulsa, for the XRD measurements.

Compliance of Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Xu Y, Bao X, Lin L (2003) J Catal 216:386–395Google Scholar
  2. 2.
    Rostrup-Nielsen JR, Sehested J, Nørskov JK (2002) Adv Catal 47:65–139Google Scholar
  3. 3.
    Wang L, Tao L, Xie M, Xu G, Huang J, Xu Y (1993) Catal Lett 21:35–41Google Scholar
  4. 4.
    Chen L, Lin L, Xu Z, Li X, Zhang T (1995) J Catal 157:190–200Google Scholar
  5. 5.
    Liu B, Zhang Y, Liu J, Tian M, Zhang F, Au C, Cheung A-C (2011) J Phys Chem C 115:16954–16962Google Scholar
  6. 6.
    Xiong Z-T, Zhang H-B, Lin G-D, Zeng J-L (2001) Catal Lett 74:233–239Google Scholar
  7. 7.
    Zeng JL, Xiong ZT, Zhang HB, Lin GD, Tsai K (1998) Catal Lett 53:119–124Google Scholar
  8. 8.
    Wang L, Ohnishi R, Ichikawa M (2000) J Catal 190:276–283Google Scholar
  9. 9.
    Shen XC, Lou H, Hu K, Zheng XM (2007) Chin Chem Lett 18:479–482Google Scholar
  10. 10.
    Zhang C-L, Li S, Yuan Y, Zhang W-X, Wu T-H, LIn L-W (1998) Catal Lett 56:207–213Google Scholar
  11. 11.
    Wong S-T, Xu Y, Liu W, Wang L, Guo X (1996) Appl Catal A 136:7–17Google Scholar
  12. 12.
    Wu P, Kan Q, Wang D, Xing H, Jia M, Wu T (2005) Catal Commun 6:449–454Google Scholar
  13. 13.
    Wang D, Kan Q, Xu N, Wu P, Wu T (2004) Catal Today 93:75–80Google Scholar
  14. 14.
    Ma D, Shu Y, Han X, Liu X, Xu Y, Bao X (2001) J Phys Chem B 105:1786–1793Google Scholar
  15. 15.
    Ding W, Meitzner GD, Iglesia E (2002) J Catal 206:14–22Google Scholar
  16. 16.
    Li Y, Liu L, Huang X, Liu X, Shen W, Xu Y, Bao X (2007) Catal Commun 8:1567–1572Google Scholar
  17. 17.
    Zhu P, Yang G, Sun J, Fan R, Zhang P, Yoneyama Y, Tsubaki N (2017) J Mater Chem A 5:8599–8607Google Scholar
  18. 18.
    Zhang Y, Jiang H (2018) Chem Commun 54:10343–10346Google Scholar
  19. 19.
    Ma H, Kojima R, Kikuchi S, Ichikawa M (2005) Catal Lett 104:63–66Google Scholar
  20. 20.
    Ohnishi R, Liu S, Dong Q, Wang L, Ichikawa M (1999) J Catal 182:92–103Google Scholar
  21. 21.
    Lacheen HS, Iglesia E (2005) J Catal 230:173–185Google Scholar
  22. 22.
    Liu Z, Nutt MA, Iglesia E (2002) Catal Lett 81:271–279Google Scholar
  23. 23.
    Tan P (2018) Catal Commun 103:101–104Google Scholar
  24. 24.
    Burns S, Hargreaves J, Pal P, Parida K, Parija S (2006) Catal Today 114:383–387Google Scholar
  25. 25.
    Rodrigues ACC, Monteiro JLF (2008) Catal Commun 9:1060–1065Google Scholar
  26. 26.
    Dong Q, Zhao X, Wang J, Ichikawa M (2004) J Nat Gas Chem 13:36–40Google Scholar
  27. 27.
    Xu Y, Wang J, Suzuki Y, Zhang Z-G (2012) Catal Today 185:41–46Google Scholar
  28. 28.
    Masiero SS, Marcilio NR, Perez-Lopez OW (2009) Catal Lett 131:194–202Google Scholar
  29. 29.
    Aboul-Gheit AK, Awadallah AE, Aboul-Enein AA, Mahmoud A-LH (2011) Fuel 90:3040–3046Google Scholar
  30. 30.
    Liu B, Yang Y, Sayari A (2001) Appl Catal A 214:95–102Google Scholar
  31. 31.
    Tshabalala TE, Coville NJ, Scurrell MS (2014) Appl Catal A 485:238–244Google Scholar
  32. 32.
    Cheng X, Yan P, Zhang X, Yang F, Dai C, Li D, Ma X-X (2017) Mol Catal 437:114–120Google Scholar
  33. 33.
    Iliuta MC, Iliuta I, Grandjean BP, Larachi F (2003) Ind Eng Chem Res 42:3203–3209Google Scholar
  34. 34.
    Larachi F, Oudghiri-Hassani H, Iliuta M, Grandjean B, McBreen P (2002) Catal Lett 84:183–192Google Scholar
  35. 35.
    Xu Y, Wang J, Suzuki Y, Zhang Z-G (2011) Appl Catal A 409:181–193Google Scholar
  36. 36.
    Xu Y, Suzuki Y, Zhang Z-G (2013) Appl Catal A 452:105–116Google Scholar
  37. 37.
    Sun K, Gong W, Gasem K, Adidharma H, Fan M, Chen R (2017) Ind Eng Chem Res 56:11398–11412Google Scholar
  38. 38.
    Sun K, Ginosar DM, He T, Zhang Y, Fan M, Chen R (2018) Ind Eng Chem Res 57:1768–1789Google Scholar
  39. 39.
    Abdelsayed V, Shekhawat D, Smith MW (2015) Fuel 139:401–410Google Scholar
  40. 40.
    Aboul-Gheit AK, El-Masry MS, Awadallah AE (2012) Fuel Process Technol 102:24–29Google Scholar
  41. 41.
    Xiong Z-T, Chen L-L, Zhang H-B, Zeng J-L, Lin G-D (2001) Catal Lett 74:227–232Google Scholar
  42. 42.
    Tshabalala TE, Coville NJ, Anderson JA, Scurrell MS (2015) Appl Catal A 503:218–226Google Scholar
  43. 43.
    Pinglian T, Zhusheng X, Tao Z, Liayuan C, Liwu L (1997) React Kinet Catal Lett 61:391–396Google Scholar
  44. 44.
    Liu B, Jiang L, Sun H, Au C (2007) Appl Surf Sci 253:5092–5100Google Scholar
  45. 45.
    Shu Y, Xu Y, Wong S-T, Wang L, Guo X (1997) J Catal 170:11–19Google Scholar
  46. 46.
    Martínez A, Peris E (2016) Appl Catal A 515:32–44Google Scholar
  47. 47.
    Wang L, Xu Y, Wong S-T, Cui W, Guo X (1997) Appl Catal A 152:173–182Google Scholar
  48. 48.
    Kojima R, Kikuchi S, Ma H, Bai J, Ichikawa M (2006) Catal Lett 110:15–21Google Scholar
  49. 49.
    Ramasubramanian V, Ramsurn H, Price GL, J. Energy Chem. (2018)Google Scholar
  50. 50.
    Price GL, Kanazirev V (1997) Zeolites 18:33–37Google Scholar
  51. 51.
    Kanazirev VI, Price GL, Dooley KM (1994) J Catal 148:164–180Google Scholar
  52. 52.
    Kanazirev V, Dooley KM, Price GL (1994) J Catal 146:228–236Google Scholar
  53. 53.
    Lee JS, Lee KH, Lee JY (1992) J Phys Chem 96:362–366Google Scholar
  54. 54.
    Scurrell M (1987) Appl Catal 32:1–22Google Scholar
  55. 55.
    Scurrell M (1988) Appl Catal 41:89–98Google Scholar
  56. 56.
    Oshikawa K, Nagai M, Omi S (2001) J Phys Chem B 105:9124–9131Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Vaidheeshwar Ramasubramanian
    • 1
  • Daniel J. Lienhard
    • 1
  • Hema Ramsurn
    • 1
    Email author
  • Geoffrey L. Price
    • 1
  1. 1.Russell School of Chemical EngineeringThe University of TulsaTulsaUSA

Personalised recommendations