Direct Synthesis of Hydrogen Peroxide Using Cs-Containing Heteropolyacid-Supported Palladium–Copper Catalysts

  • Faisal Alotaibi
  • Sulaiman Al-Mayman
  • Mohammad Alotaibi
  • Jennifer K. Edwards
  • Richard J. Lewis
  • Raja AlotaibiEmail author
  • Graham J. Hutchings


The direct synthesis of hydrogen peroxide (H2O2) from molecular hydrogen and oxygen could represent a green and economically attractive alternative to the current indirect anthraquinone process used for the industrial production of hydrogen peroxide. This reaction has been investigated using palladium supported on the Cs-containing heteropolyacid Cs2.5H0.5PW12O40. In addition, the effect of adding copper as a potential activity promoter was investigated. These catalysts were also evaluated for the subsequent degradation of hydrogen peroxide. The catalytic activity of the 0.5 wt%Pd/Cs2.5H0.5PW12O40 catalyst towards hydrogen peroxide synthesis was greater than that of both the mono-metallic Cu or bi-metallic Pd–Cu analogues with the incorporation of Cu to Pd resulting in a significant decrease in catalytic selectivity for the formation of hydrogen peroxide. Moreover, 0.5 wt%Pd/Cs2.5H0.5PW12O40 also showed low activity towards the degradation of hydrogen peroxide. Hence the use of the Cs-containing heteropolyacid as a support for Pd gives higher rates of hydrogen peroxide formation when compared with different supported Pd catalysts prepared using supports used in previous studies.

Graphical Abstract


Green chemistry Copper Palladium Bimetallic catalysts Heteropolyacids Hydrogen peroxide 



The authors would like to thank KACST for funding of this project. In addition, we thank our colleagues from Cardiff University who provided insight and expertise that greatly assisted in completing the work.


  1. 1.
    Yu J, Shao D, Sun C, Xu C, Hinks D (2017) Cellulose 24:2647–2655CrossRefGoogle Scholar
  2. 2.
    Yu D, Wu M, Lin F (2017) Fibers Polym 18:1741–1748CrossRefGoogle Scholar
  3. 3.
    Hage R, Lienke A (2006) Angew Chem Int Ed 45:206–222CrossRefGoogle Scholar
  4. 4.
    Babuponnusami A, Muthukuma K (2014) J Environ Chem Eng 2:557–572CrossRefGoogle Scholar
  5. 5.
    Mohammadi S, Kargari A, Sanaeepur H, Abbassian K, Najafi A, Mofarrah E (2015) Desalin Water Treat 53:2215–2234CrossRefGoogle Scholar
  6. 6.
    Signorile M, Crocellà V, Damin A, Rossi B, Lamberti C, Bonino F, Bordiga S (2018) J Phys Chem C 122:9021–9034CrossRefGoogle Scholar
  7. 7.
    Campos-Martin JM, Blanco-Brieva G, Fierro JLG (2006) Angew Chem Int Ed 45:6962–6984CrossRefGoogle Scholar
  8. 8.
    Lin M, Xia C, Zhu B, Li H, Shu X (2016) Chem Eng J 295:370–375CrossRefGoogle Scholar
  9. 9.
    Seo MG, Kim HJ, Han SS, Lee KY (2017) Catal Surv Asia 21:1–12CrossRefGoogle Scholar
  10. 10.
    Riedl HJ, Pfleiderer G (1939) IG Farbenindustrie AGGoogle Scholar
  11. 11.
    Samanta C, Choudhary VR (2007) Catal Commun 8:73–79CrossRefGoogle Scholar
  12. 12.
    Choudhary VR, Samanta C, Jana P (2007) Appl Catal A 317:234–243CrossRefGoogle Scholar
  13. 13.
    Liu Q, Gath KK, Bauer JC, Schaak RE, Lunsford JH (2009) Catal Lett 132:342–348CrossRefGoogle Scholar
  14. 14.
    Landon P, Collier PJ, Papworth AJ, Kiely CJ, Hutchings GJ (2002) Chem Commun 0:2058–2059CrossRefGoogle Scholar
  15. 15.
    Edwards JK, Thomas A, Solsona BE, Landon P, Carley AF, Hutchings GJ (2007) Catal Today 122:397–402CrossRefGoogle Scholar
  16. 16.
    Potemkin DI, Maslov DK, Loponov K, Snytnikov PV, Shubin YV, Plyusnin PE, Svintsitskiy DA, Sobyanin VA, Lapkin AA (2018) Front Chem 6:85. CrossRefGoogle Scholar
  17. 17.
    Liu Q, Bauer JC, Schaak RE, Lunsford JH (2008) Appl Catal A 339:130–136CrossRefGoogle Scholar
  18. 18.
    Sterchele S, Biasi P, Centomo P, Canton P, Campestrini S, Salmi T, Zecca M (2013) Appl Catal A 468:160–174CrossRefGoogle Scholar
  19. 19.
    Ntainjua EN, Freakley SJ, Hutchings GJ (2012) Top Catal 55:718–722CrossRefGoogle Scholar
  20. 20.
    Deguchi T, Yamano H, Takenouchi S, Iwamoto M (2018) Catal Sci Technol 8:1002–1015CrossRefGoogle Scholar
  21. 21.
    Khan Z, Dummer NF, Edwards JK (2018) Philos Trans R Soc A 376:20170058. CrossRefGoogle Scholar
  22. 22.
    Gu J, Wang S, He Z, Han Y, Zhang J (2016) Catal Sci Technol 6:809–817CrossRefGoogle Scholar
  23. 23.
    Freakley SJ, He Q, Harrhy JH, Lu L, Crole DA, Morgan DJ, Ntainjua EN, Edwards JK, Carley AF, Borisevich AY, Kiely CJ, Hutchings GJ (2016) Science 351:965–968CrossRefGoogle Scholar
  24. 24.
    Li F, Shao Q, Hu M, Chen Y, Huang X (2018) ACS Catal 8:3418–3423CrossRefGoogle Scholar
  25. 25.
    Zhang J, Shao Q, Zhang Y, Bai S, Feng Y, Huang X (2018) Small 14:1703990. CrossRefGoogle Scholar
  26. 26.
    Wang S, Gao K, Li W, Zhang J (2017) Appl Catal A 531:89–95CrossRefGoogle Scholar
  27. 27.
    Maity S, Eswaramoorthy M (2016) J Mater Chem 4:3233–3237CrossRefGoogle Scholar
  28. 28.
    Tian P, Xu X, Ao C, Ding D, Li W, Si R, Tu W, Xu J, Han YF (2017) ChemSusChem 10:3342–3346CrossRefGoogle Scholar
  29. 29.
    Xu H, Cheng D, Gao Y (2017) ACS Catal 7:2164–2170CrossRefGoogle Scholar
  30. 30.
    Ntainjua EN, Edwards JK, Carley AF, Lopez-Sanchez JA, Moulijn JA, Herzing AA, Kiely CJ, Hutchings GJ (2008) Green Chem 10:1162–1169CrossRefGoogle Scholar
  31. 31.
    Park S, Choi JH, Kim TJ, Chung YM, Oh SH, Song IK (2012) Catal Today 185:162–167CrossRefGoogle Scholar
  32. 32.
    Park S, Choi JH, Kim TJ, Chung YM, Oh SH, Song IK (2012) J Mol Catal A 353–354:37–43CrossRefGoogle Scholar
  33. 33.
    Lewis RJ, Edwards JK, Freakley SJ, Hutchings GJ (2017) Ind Eng Chem Res 56:13287–13293CrossRefGoogle Scholar
  34. 34.
    Mori K, Furubayashi K, Okada S, Yamashita H (2012) RSC Adv 2:1047CrossRefGoogle Scholar
  35. 35.
    Lee JW, Kim JK, Kang TH, Lee EJ, Song IK (2017) Catal Today 293–294:49–55CrossRefGoogle Scholar
  36. 36.
    Park S, Park DR, Choi JH, Kim TJ, Chung YM, Oh SH, Song IK (2011) J Mol Catal A 336:78–86CrossRefGoogle Scholar
  37. 37.
    Park S, Kim TJ, Chung YM, Oh SH, Song IK (2010) Res Chem Intermed 36:639–646CrossRefGoogle Scholar
  38. 38.
    Sun M, Zhang J, Zhang Q, Wang Y, Wan H (2009) Chem Commun (Cambridge UK) 0:5174–5176CrossRefGoogle Scholar
  39. 39.
    Ntainjua EN, Piccinini M, Freakley SJ, Pritchard JC, Edwards JK, Carley AF, Hutchings GJ (2012) Green Chem 14:170–181CrossRefGoogle Scholar
  40. 40.
    Freakley SJ, Lewis RJ, Morgan DJ, Edwards JK, Hutchings GJ (2015) Catal Today 248:10–17CrossRefGoogle Scholar
  41. 41.
    Park S, Lee S, Song S, Park D, Baeck S, Kim T, Chung Y, Oh S, Song I (2009) Catal Commun 10:391–394CrossRefGoogle Scholar
  42. 42.
    Essayem N, Holmqvist A, Gayraud PY, Verdrine JC, Taarit YB (2001) J Catal 197:273–280CrossRefGoogle Scholar
  43. 43.
    Edwards JK, Pritchard JC, Lu L, Piccinini M, Shaw G, Carley AF, Morgan DJ, Kiely CJ, Hutchings GJ (2014) Angew Chem Int Ed 53:2381–2384CrossRefGoogle Scholar
  44. 44.
    Ab Rahim MH, Armstrong RD, Hammond C, Dimitratos N, Freakley SJ, Forde MM, Morgan DJ, Lalev G, Jenkins RL, Lopez-Sanchez JA, Taylor SH, Hutchings GJ (2016) Catal Sci Technol 6:3410–3418CrossRefGoogle Scholar
  45. 45.
    Joshi AM, Delgass WN, Thomson KT (2007) J Phys Chem C 111:7384–7395CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Faisal Alotaibi
    • 1
  • Sulaiman Al-Mayman
    • 1
  • Mohammad Alotaibi
    • 1
  • Jennifer K. Edwards
    • 2
  • Richard J. Lewis
    • 2
  • Raja Alotaibi
    • 1
    Email author
  • Graham J. Hutchings
    • 2
  1. 1.National Center for Petrochemicals TechnologyKing Abdulaziz City for Science and TechnologyRiyadhKingdom of Saudi Arabia
  2. 2.Cardiff Catalysis Institute, School of ChemistryCardiff UniversityCardiffUK

Personalised recommendations