Advertisement

Pt–Cu Alloy Nanoparticles Encapsulated in Silicalite-1 Molecular Sieve: Coke-Resistant Catalyst for Alkane Dehydrogenation

  • Xiaotong Zhang
  • Ning He
  • Chunyan Liu
  • Hongchen GuoEmail author
Article
  • 37 Downloads

Abstract

Highly dispersed Pt–Cu alloy nanoparticles encapsulated in silicalite-1 were prepared by one-pot method. Taking propane dehydrogenation as a probe reaction, it was found that anti-coke ability was improved by encapsulation. Through H2-TPR, CO adsorption DRIFT spectra and X-ray Photoelectron Spectroscopy experiment, enhanced anti-coke ability was ascribed to the electronic environment change of encapsulated metal. And it was further confirmed by in situ coking experiment. Owning to limited acidity, metal encapsulated by silicalite-1 molecular sieve exhibited better anti-coke ability and higher propylene selectivity than that by stronger acidic ZSM-5 molecular sieve. Moreover it was found that the combination of Cu and Pt made better catalytic performance and accelerated dehydrogenation more effectively compared with monometallic catalysts. Therefore, Pt–Cu alloy nanoparticles encapsulated in silicalite-1 molecular sieve core–shell material was a potential coke-resistant catalyst for alkane dehydrogenation reaction.

Graphical Abstract

Keywords

Pt–Cu alloys Silicalite-1 Coke-resistant catalyst Alkanes dehydrogenation Core–shell structure 

Notes

Acknowledgements

We thank Dr. Wanyue Ye from Dalian University of Technology State Key Laboratory of Fine Chemicals for supplying the transmission electron microscopy analysis and helpful discussions.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10562_2019_2671_MOESM1_ESM.docx (556 kb)
Supplementary material 1 (DOCX 556 KB)

References

  1. 1.
    Sattler JJHB, Ruiz-Martinez J, Santillan-Jimenez E et al (2014) Chem Rev 114:10613CrossRefGoogle Scholar
  2. 2.
    Li Q, Sui Z, Zhou X et al (2011) Top Catal 54:888CrossRefGoogle Scholar
  3. 3.
    Yang F, Koeller J, Ackermann L (2016) Angew Chem Int Ed 55:4759CrossRefGoogle Scholar
  4. 4.
    Han Z, Li S, Jiang F et al (2014) Nanoscale 6:10000CrossRefGoogle Scholar
  5. 5.
    Marcinkowski MD, Darby MT, Liu JL, et al (2018) Nat Chem 10:325CrossRefGoogle Scholar
  6. 6.
    Dai Y, Lu P, Cao Z et al (2018) Chem Soc Rev 47:4314CrossRefGoogle Scholar
  7. 7.
    Choi M, Wu Z, Iglesia E (2010) J Am Chem Soc 132:9129CrossRefGoogle Scholar
  8. 8.
    Mikhailov MN, Kustov LM, Kazansky VB (2008) Catal Lett 120:8CrossRefGoogle Scholar
  9. 9.
    Liu L, Díaz U, Arenal R et al (2017) Nat Mater 16:132CrossRefGoogle Scholar
  10. 10.
    Huang J, Song Y, Ma D et al (2017) Chin J Catal 38:1229CrossRefGoogle Scholar
  11. 11.
    Li S, Boucheron T, Tuel A et al (2014) Chem Commun 50:1824CrossRefGoogle Scholar
  12. 12.
    Epron F, Gauthard F, Barbier J (2002) Appl Catal A 237:253CrossRefGoogle Scholar
  13. 13.
    Crisafulli R, De Barros VVS, De Oliveira FER et al (2018) Appl Catal B 236:36CrossRefGoogle Scholar
  14. 14.
    Smirnov MY, Kalinkin AV, Vovk EI et al (2018) Appl Surf Sci 428:972CrossRefGoogle Scholar
  15. 15.
    Romeo M, Majerus J, Legare P (1990) Surf Sci 238:163CrossRefGoogle Scholar
  16. 16.
    Mcintyre NS, Cook MG (1975) Anal Chem 47:2208CrossRefGoogle Scholar
  17. 17.
    Fleisch TH, Mains GJ (1986) J Phys Chem 90:5317CrossRefGoogle Scholar
  18. 18.
    Schön G (1972) J Electron Spectrosc Relat Phenom 1:377CrossRefGoogle Scholar
  19. 19.
    Robert T, Offergeld G (1972) Phys Status Solidi 14:277CrossRefGoogle Scholar
  20. 20.
    Bird RJ, Swift PJ (1980) Electron Spectrosc Relat Phenom 21:227CrossRefGoogle Scholar
  21. 21.
    Dubs CE, Workie AB, Kounaves SP et al (1995) J Electrochem Soc 142:3357CrossRefGoogle Scholar
  22. 22.
    Jolley JG, Geesey GG, Hankins MR et al (1989) Appl Surf Sci 37:469CrossRefGoogle Scholar
  23. 23.
    De Graaf J, Van Dillen AJ, De Jong KP et al (2001) J Catal 203:307CrossRefGoogle Scholar
  24. 24.
    Zaera F (2001) Prog Surf Sci 69:1CrossRefGoogle Scholar
  25. 25.
    Milushev A, Hadjiivanov K (2001) Phys Chem Chem Phys 3:5337CrossRefGoogle Scholar
  26. 26.
    Thomas S, Rivallan M, Lepage M et al (2011) Microporous Mesoporous Mater 140:103CrossRefGoogle Scholar
  27. 27.
    Chakarova K, Mihaylov M, Hadjiivanov K (2005) Catal Commun 6:466CrossRefGoogle Scholar
  28. 28.
    Serykh AI, Tkachenko OP, Borovkov VY et al (2000) Phys Chem Chem Phys 2:2667CrossRefGoogle Scholar
  29. 29.
    Toolenaar FJCM, Stoop F, Ponec V (1983) J Catal 82:1CrossRefGoogle Scholar
  30. 30.
    Stakheev AY, Shpiro ES, Jaeger NI et al (1995) Catal Lett 32:147CrossRefGoogle Scholar
  31. 31.
    Ferrari AM, Neyman KM, Belling T et al (1999) J Phys Chem B 103:216CrossRefGoogle Scholar
  32. 32.
    Zhou S, Zhou Y, Zhang Y et al (2016) J Chem Technol Biotechnol 91:1072CrossRefGoogle Scholar
  33. 33.
    Kumar MS, Holmen A, Chen D (2009) Microporous Mesoporous Mater 126:152CrossRefGoogle Scholar
  34. 34.
    Zhang Y, Zhou Y, Shi J et al (2014) J Mol Catal A 381:138CrossRefGoogle Scholar
  35. 35.
    Arudra P, Bhuiyan TI, Akhtar MN et al (2014) ACS Catal 4:4205CrossRefGoogle Scholar
  36. 36.
    Morettia G, Dossib C, Fusib A et al (1999) Appl Catal B 20:67CrossRefGoogle Scholar
  37. 37.
    Biscardi JA, Meitzner GD, Iglesia E (1998) J Catal 179:192CrossRefGoogle Scholar
  38. 38.
    Grillo ME, De Agudelo MMR (1996) J Mol Model 2:183CrossRefGoogle Scholar
  39. 39.
    Cremer PS, Su X, Shen YR et al (1996) J Phys Chem 100:16302CrossRefGoogle Scholar
  40. 40.
    Zhu Y, An Z, Song H et al (2017) ACS Catal 7:6973CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Catalytical Chemistry and Engineering, State Key Laboratory of Fine ChemicalsDalian University of TechnologyDalianPeople’s Republic of China

Personalised recommendations