Selective Oxidation of 1,2-Propanediol to Lactic Acid Over Synergistic AuCu/TiO2 Catalysts

  • Feng Du
  • Hongmei Wang
  • Xin JinEmail author
  • Wenan Deng
  • Chuan Li
  • Zhixiang Ren
  • Hao Yan
  • Bin Yin


This paper reported synergistic bimetallic AuCu/TiO2 catalysts for selective oxidation of 1,2-propanediol to lactic acid under very mild conditions (T < 90 °C, 1 MPa O2). The addition of Cu to monometallic Au/TiO2 catalyst leads to a twofold activity enhancement for Au catalysts (TOF: 11894 h−1) with good selectivity towards lactic acid (S > 92%). Surface characterization reveals that while AuCu forms alloy structure with larger particle size based on TEM images, strong interaction between Au and Cu species is critical for performance enhancement. According to experimental studies on the influence of 1,2-propanediol and NaOH concentration on reaction rates, it is highly possible that 1,2-propanediol is reacted following single-site Langmuir–Hinshelwood mechanism while NaOH acts as a promoter and may block surface sites under relatively higher concentration.

Graphical Abstract


Bimetallic catalyst Oxidation 1,2-Propanediol Lactic acid 



This work is supported by National Natural Science Foundation of China (Grant No. 21706290), Natural Science Foundation of Shandong Province (Grant No. ZR2017MB004), Innovative Research Funding from Qingdao City, Shandong Province (Grant No. 17-1-1-80-jch), “Fundamental Research Funds for the Central Universities” (Grant No. 17CX02017A) and New Faculty Start-Up Funding from China University of Petroleum (Grant No. YJ201601059).

Compliance with Ethical Standards

Conflict of interest

All authors declare that: (i) no support, financial or otherwise, has been received from any organization that may have an interest in the submitted work; and (ii) there are no other relationships or activities that could appear to have influenced the submitted work.


  1. 1.
    Zheng Y, Chen X, Shen Y (2008) Chem Rev 108:5253–5277CrossRefGoogle Scholar
  2. 2.
    Katryniok B, Kimura H, Skrzyńska E, Girardon J, Fongarland P, Capron M, Ducoulombier R, Mimura N, Paul S, Dumeignil F (2011) Green Chem 13:1960CrossRefGoogle Scholar
  3. 3.
    Nishimura S, Ebitani K (2017) J Jpn Pet Inst 60:72–84CrossRefGoogle Scholar
  4. 4.
    Besson M, Gallezot P, Pinel C (2013) Chem Rev 114:1827–1870CrossRefGoogle Scholar
  5. 5.
    Ghaffar T, Irshad M, Anwar Z, Aqil T, Zulifqar Z, Tariq A, Kamran M, Ehsan N, Mehmood S (2014) J Radiat Res Appl Sci 7:222–229CrossRefGoogle Scholar
  6. 6.
    Datta R, Henry M (2006) J Chem Technol Biotechnol 81:1119–1129CrossRefGoogle Scholar
  7. 7.
    Dusselier M, Van Wouwe P, Dewaele A, Makshina E, Sels BF (2013) Energy Environ Sci 6:1415CrossRefGoogle Scholar
  8. 8.
    Sikder J, Chakraborty S, Pal P, Drioli E, Bhattacharjee C (2012) Biochem Eng J 69:130–137CrossRefGoogle Scholar
  9. 9.
    Ramírez-López CA, Ochoa-Gómez JR, Fernández-Santos M, Gómez-Jiménez-Aberasturi O, Alonso-Vicario A, Torrecilla-Soria J (2010) Ind Eng Chem Res 49:6270–6278CrossRefGoogle Scholar
  10. 10.
    Purushothaman RKP, van Haveren J, van Es DS, Meli N-Cabrera I, Meeldijk JD, Heeres HJ (2014) Appl Catal B 147:92–100CrossRefGoogle Scholar
  11. 11.
    Shen L, Zhou X, Wang A, Yin H, Yin H, Cui W (2017) RSC Adv 7:30725–30739CrossRefGoogle Scholar
  12. 12.
    Miyazawa T, Koso S, Kunimori K, Tomishige K (2007) Appl Catal A 329:30–35CrossRefGoogle Scholar
  13. 13.
    Durán-Martín D, Granados ML, Fierro JLG, Pinel C, Mariscal R (2017) Top Catal 60:1062–1071CrossRefGoogle Scholar
  14. 14.
    Feng Y, Yin H, Wang A, Gao D, Zhu X, Shen L, Meng M (2014) Appl Catal A 482:49–60CrossRefGoogle Scholar
  15. 15.
    Ryabenkova Y, He Q, Miedziak PJ, Dummer NF, Taylor SH, Carley AF, Morgan DJ, Dimitratos N, Willock DJ, Bethell D, Knight DW, Chadwick D, Kiely CJ, Hutchings GJ (2013) Catal Today 203:139–145CrossRefGoogle Scholar
  16. 16.
    Ryabenkova Y, Miedziak PJ, Dummer NF, Taylor SH, Dimitratos N, Willock DJ, Bethell D, Knight DW, Hutchings GJ (2012) Top Catal 55:1283–1288CrossRefGoogle Scholar
  17. 17.
    Redina E, Greish A, Novikov R, Strelkova A, Kirichenko O, Tkachenko O, Kapustin G, Sinev I, Kustov L (2015) Appl Catal A 491:170–183CrossRefGoogle Scholar
  18. 18.
    Feng Y, Yin H, Gao D, Wang A, Shen L, Meng M (2014) J Catal 316:67–77CrossRefGoogle Scholar
  19. 19.
    Griffin MB, Rodriguez AA, Montemore MM, Monnier JR, Williams CT, Medlin JW (2013) J Catal 307:111–120CrossRefGoogle Scholar
  20. 20.
    Xue W, Feng Y, Yin H, Liu S, Wang A, Shen L (2016) J Nanosci Nanotechnol 16:9621–9633CrossRefGoogle Scholar
  21. 21.
    Xue W, Yin H, Lu Z, Feng Y, Wang A, Liu S, Shen L, Jia X (2016) Catal Lett 146:1139–1152CrossRefGoogle Scholar
  22. 22.
    Jin X, Dang L, Lohrman J, Subramaniam B, Ren S, Chaudhari RV (2013) ACS Nano 7:1309–1316CrossRefGoogle Scholar
  23. 23.
    Jin X, Zhao M, Shen J, Yan W, He L, Thapa PS, Ren S, Subramaniam B, Chaudhari RV (2015) J Catal 330:323–329CrossRefGoogle Scholar
  24. 24.
    Borodziński A, Bonarowska M (1997) Langmuir 13:5613–5620CrossRefGoogle Scholar
  25. 25.
    Jin X, Zhao M, Yan W, Zeng C, Bobba P, Thapa PS, Subramaniam B, Chaudhari RV (2016) J Catal 337:272–283CrossRefGoogle Scholar
  26. 26.
    Zhang C, Wang T, Liu X, Ding Y (2016) J Mol Catal Chem A 424:91–97Google Scholar
  27. 27.
    Sandoval A, Delannoy L, Méthivier C, Louis C, Zanella R (2015) Appl Catal A 504:287–294CrossRefGoogle Scholar
  28. 28.
    Rout L, Kumar A, Dhaka RS, Reddy GN, Giri S, Dash P (2017) Appl Catal A 538:107–122CrossRefGoogle Scholar
  29. 29.
    Tripathy T, Kolya H, Jana S, Senapati M (2017) Eur Polymer J 87:113–123CrossRefGoogle Scholar
  30. 30.
    Zhang H, Deng X, Jiao C, Lu L, Zhang S (2016) Mater Res Bull 79:29–35CrossRefGoogle Scholar
  31. 31.
    Xie H, Ye X, Duan K, Xue M, Du Y, Ye W, Wang C (2015) J Alloys Compd 636:40–47CrossRefGoogle Scholar
  32. 32.
    Goswami P, Ganguli JN (2013) Dalton Trans 42:14480CrossRefGoogle Scholar
  33. 33.
    Camps E, Castrejón-Sánchez VH, Camacho-López M, Basurto R (2015) Thin Solid Films 581:54–58CrossRefGoogle Scholar
  34. 34.
    Bukhtiyarov AV, Prosvirin IP, Bukhtiyarov VI (2016) Appl Surf Sci 367:214–221CrossRefGoogle Scholar
  35. 35.
    Huang X, Wang X, Wang X, Wang X, Tan M, Ding W, Lu X (2013) J Catal 301:217–226CrossRefGoogle Scholar
  36. 36.
    Strohmeier BR, Levden DE, Field RS, Hercules DM (1985) J Catal 94:514–530CrossRefGoogle Scholar
  37. 37.
    Yoshida T, Yamasaki K, Sawada S (2006) Bull Chem Soc Jpn 52:2908–2912CrossRefGoogle Scholar
  38. 38.
    Parmigiani F, Pacchioni G, Illas F, Bagus PS (1992) J Electron Spectrosc Relat Phenom 59:255–269CrossRefGoogle Scholar
  39. 39.
    Wang H, Fan W, He Y, Wang J, Kondo JN, Tatsumi T (2013) J Catal 299:10–19CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Feng Du
    • 1
  • Hongmei Wang
    • 1
  • Xin Jin
    • 1
    Email author
  • Wenan Deng
    • 1
  • Chuan Li
    • 1
  • Zhixiang Ren
    • 1
  • Hao Yan
    • 1
  • Bin Yin
    • 1
  1. 1.State Key Laboratory of Heavy Oil Processing, College of Chemical EngineeringChina University of PetroleumQingdaoChina

Personalised recommendations