Advertisement

Catalysis Letters

, Volume 149, Issue 3, pp 713–722 | Cite as

Covalently Copper(II) Porphyrin Cross-Linked Graphene Oxide: Preparation and Catalytic Activity

  • Amir KhojastehnezhadEmail author
  • Mehdi Bakavoli
  • Ali Javid
  • Mohammad Mehdi Khakzad Siuki
  • Farid Moeinpour
Article
  • 13 Downloads

Abstract

In this study, copper(II)-coordinated 5,10,15,20-tetrakis(aminophenyl)porphyrin (CuPPh) as a macrocyclic copper complex was covalently linked to the surface of graphene oxide (GO–CuPPh). This covalently cross-linked catalyst was characterized with various analysis such as FT-IR, SEM, TEM, EDS, ICP, TGA and UV–Vis. All analysis confirm the successful covalently immobilization of CuPPh on the GO. Then, the activity of catalyst has been tested for the preparation of propargylamine derivatives by the reaction of different aldehydes/ketones various amines and phenylacetylene via A3 and KA2 coupling reactions. The catalytic system indicated great catalytic activity in this reaction and the yields of the products were good to marvelous. The results of this work are hoped to aid the establishment of new class of heterogeneous catalysts as the high performance and low-cost candidates for industrial applications.

Graphical Abstract

Keywords

Heterogeneous catalysis Porphyrin Graphene oxide Propargylamine 

Notes

Acknowledgements

The authors are thankful to the Iran National Science Foundation and Ferdowsi University of Mashhad for financial support.

References

  1. 1.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666–669Google Scholar
  2. 2.
    Tombros N, Jozsa C, Popinciuc M, Jonkman HT, Van Wees BJ (2007) Nature 448:571Google Scholar
  3. 3.
    Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Nano Lett 8:902–907Google Scholar
  4. 4.
    Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GH, Evmenenko G, Nguyen ST, Ruoff RS (2007) Nature 448:457Google Scholar
  5. 5.
    Zhang LY, Liu Z (2017) J Colloid Interface Sci 505:783–788Google Scholar
  6. 6.
    Li J, Tang X, Yi H, Yu Q, Gao F, Zhang R, Li C, Chu C (2017) Appl Surf Sci 412:37–44Google Scholar
  7. 7.
    Zhao J, Zhou J, Yuan M, You Z (2017) Catal Lett 147:1363–1370Google Scholar
  8. 8.
    Fang M, Wang K, Lu H, Yang Y, Nutt S (2009) J Mater Chem 19:7098–7105Google Scholar
  9. 9.
    Zhao Q, Chen D, Li Y, Zhang G, Zhang F, Fan X (2013) Nanoscale 5:882–885Google Scholar
  10. 10.
    Zhao Q, Li Y, Liu R, Chen A, Zhang G, Zhang F, Fan X (2013) J Mater Chem A 1:15039–15045Google Scholar
  11. 11.
    Nia AS, Rana S, Döhler D, Noirfalise X, Belfiore A, Binder WH (2014) Chem Commun 50:15374–15377Google Scholar
  12. 12.
    Silvers SJ, Tulinsky A (1967) J Am Chem Soc 89:3331–3337Google Scholar
  13. 13.
    Rayati S, Ruzbahani SE, Nejabat F (2017) Macroheterocycles 10:62–67Google Scholar
  14. 14.
    Otte M, Kuijpers PF, Troeppner O, Ivanović-Burmazović I, Reek JN, de Bruin B (2014) Chem Eur J 20:4880–4884Google Scholar
  15. 15.
    Jiang Y-X, Su T-M, Qin Z-Z, Huang G (2015) RSC Adv 5:24788–24794Google Scholar
  16. 16.
    Zeng R, Chen G, Xiong C, Li G, Zheng Y, Chen J, Long Y, Chen S (2018) Appl Surf Sci 434:756–762Google Scholar
  17. 17.
    Zhou D, Cheng Q-Y, Cui Y, Wang T, Li X, Han B-H (2014) Carbon 66:592–598Google Scholar
  18. 18.
    Konishi M, Ohkuma H, Tsuno T, Oki T, VanDuyne GD, Clardy J (1990) J Am Chem Soc 112:3715–3716Google Scholar
  19. 19.
    Jenmalm A, Berts W, Li Y-L, Luthman K, Csoeregh I, Hacksell U (1994) J Org Chem 59:1139–1148Google Scholar
  20. 20.
    Naota T, Takaya H, Murahashi S-I (1998) Chem Rev 98:2599–2660Google Scholar
  21. 21.
    Yan W, Wang R, Xu Z, Xu J, Lin L, Shen Z, Zhou Y (2006) J Mol Catal A Chem 255:81–85Google Scholar
  22. 22.
    Wei C, Li C-J (2003) J Am Chem Soc 125:9584–9585Google Scholar
  23. 23.
    Shi L, Tu Y-Q, Wang M, Zhang F-M, Fan C-A (2004) Org Lett 6:1001–1003Google Scholar
  24. 24.
    Fischer C, Carreira EM (2001) Org Lett 3:4319–4321Google Scholar
  25. 25.
    Pin-Hua L, Lei W (2005) Chin J Chem 23:1076–1080Google Scholar
  26. 26.
    Maleki B, Nasiri N, Tayebee R, Khojastehnezhad A, Akhlaghi HA (2016) RSC Adv 6:79128–79134Google Scholar
  27. 27.
    Eshghi H, Khojastehnezhad A, Moeinpour F, Rezaeian S, Bakavoli M, Teymouri M, Rostami A, Haghbeen K (2015) Tetrahedron 71:436–444Google Scholar
  28. 28.
    Maleki B, Sheikh E, Seresht ER, Eshghi H, Ashrafi SS, Khojastehnezhad A, Veisi H (2016) Org Prep Proc Int 48:37–44Google Scholar
  29. 29.
    Javid A, Khojastehnezhad A, Heravi M, Bamoharram FF (2012) Inorg Nano-Met Chem 42:14–17Google Scholar
  30. 30.
    Maleki B, Eshghi H, Barghamadi M, Nasiri N, Khojastehnezhad A, Ashrafi SS, Pourshiani O (2016) Res Chem Intermed 42:3071–3093Google Scholar
  31. 31.
    Hummers WS Jr, Offeman RE (1958) J Am Chem Soc 80:1339–1339Google Scholar
  32. 32.
    Bookser BC, Bruice TC (1991) J Am Chem Soc 113:4208–4218Google Scholar
  33. 33.
    Fareghi-Alamdari R, Golestanzadeh M, Bagheri O (2016) RSC Adv 6:108755–108767Google Scholar
  34. 34.
    Krishna MBM, Venkatramaiah N, Venkatesan R, Rao DN (2012) J Mater Chem 22:3059–3068Google Scholar
  35. 35.
    Wang H-X, Zhou K-G, Xie Y-L, Zeng J, Chai N-N, Li J, Zhang H-L (2011) Chem Commun 47:5747–5749Google Scholar
  36. 36.
    Jiang L, Cui L, He X (2015) J Solid State Electrochem 19:497–506Google Scholar
  37. 37.
    Kumar NA, Gaddam RR, Suresh M, Varanasi SR, Yang D, Bhatia SK, Zhao X (2017) J Mater Chem 5:13204–13211Google Scholar
  38. 38.
    Cui P, Lee J, Hwang E, Lee H (2011) Chem Commun 47:12370–12372Google Scholar
  39. 39.
    Şinoforoğlu M, Gür B, Arık M, Onganer Y, Meral K (2013) Rsc Adv 3:11832–11838Google Scholar
  40. 40.
    Chen M, Zhang Z, Li L, Liu Y, Wang W, Gao J (2014) RSC Adv 4:30914–30922Google Scholar
  41. 41.
    Peng S, Fan X, Li S, Zhang J (2013) J Chil Chem Soc 58:2213–2217Google Scholar
  42. 42.
    Pinto VHA, Rebouças JS, Ucoski GM, de Faria EH, Ferreira BF, San Gil RAS, Nakagaki S (2016) Appl Catal A Gen 526:9–20Google Scholar
  43. 43.
    Feiz A, Bazgir A (2016) Catal Commun 73:88–92Google Scholar
  44. 44.
    Kumari S, Shekhar A, Pathak DD (2016) RSC Adv 6:15340–15344Google Scholar
  45. 45.
    Borah BJ, Borah SJ, Saikia K, Dutta DK (2014) Catal Sci Technol 4:4001–4009Google Scholar
  46. 46.
    Zarei Z, Akhlaghinia B (2016) RSC Adv 6:106473–106484Google Scholar
  47. 47.
    Albaladejo MJ, Alonso F, Moglie Y, Yus M (2012) Eur J Org Chem 2012:3093–3104Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Amir Khojastehnezhad
    • 1
    Email author
  • Mehdi Bakavoli
    • 1
  • Ali Javid
    • 2
  • Mohammad Mehdi Khakzad Siuki
    • 1
  • Farid Moeinpour
    • 3
  1. 1.Department of Chemistry, Faculty of ScienceFerdowsi University of MashhadMashhadIran
  2. 2.Department of Chemistry, Mashhad BranchIslamic Azad UniversityMashhadIran
  3. 3.Department of Chemistry, Bandar Abbas BranchIslamic Azad UniversityBandar AbbasIran

Personalised recommendations