Advertisement

Catalysis Letters

, Volume 149, Issue 2, pp 533–543 | Cite as

Selective Aerobic Oxidation of Vanillyl Alcohol to Vanillin Catalysed by Nanostructured Ce-Zr-O Solid Solutions

  • P. R. G. Nallappa Reddy
  • Bolla Govinda Rao
  • Tumula Venkateshwar Rao
  • Benjaram M. ReddyEmail author
Article
  • 28 Downloads

Abstract

A series of Ce1 − x–ZrxO2 − δ (x = 0.2, 0.5, and 0.8) mixed oxides were prepared by coprecipitation method and explored for selective oxidation of vanillyl alcohol employing O2 and acetonitrile as the oxidant and solvent, respectively under base-free conditions. To ascertain the key factors responsible for vanillyl alcohol oxidation, the physicochemical properties of the synthesized catalysts were investigated by various characterization techniques namely, XRD, BET surface area, Raman, XPS, and H2-TPR. It was observed from this exercise that the catalytic activity dependents on the Ce:Zr mole ratio, which is related to the degree of reducibility of the catalyst. Interestingly, the catalytic activity is enhanced with the increase of Ce content in the Ce–Zr mixed oxide. Among the investigated catalysts, the Ce0.8Zr0.2O2 combination exhibited a high catalytic activity with ~ 98% conversion and ~ 99% selectivity to vanillin. Smaller crystallite size, large BET surface area, more number of oxygen vacancies, improved redox properties, and strong synergetic interaction are found to be the key factors to promote the oxidation ability of Ce0.8Zr0.2O2 catalysts towards vanillyl alcohol oxidation. Further, the influence of reaction parameters such as time, solvent, temperature, and oxygen pressure were also studied to optimize the catalytic process for vanillyl alcohol oxidation. As revealed by these studies, the high activity of Ce0.8Zr0.2O2 catalyst could be retained up to five cycles without appreciable loss in the activity and selectivity.

Graphical Abstract

Nanosized Ce0.8Zr0.2O2 catalyst exhibited an excellent catalytic activity and superior selectivity to vanillin in the liquid phase oxidation of vanillyl alcohol under ecofriendly conditions

Keywords

Ceria Vanillyl alcohol Vanillin Oxygen vacancy Redox properties 

Notes

Acknowledgements

PRGNR and BG thank the Council of Scientific and Industrial Research (CSIR), New Delhi for the research fellowships. BMR thanks the Department of Atomic Energy (DAE), Mumbai for the award of Raja Ramanna Fellowship.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10562_2019_2658_MOESM1_ESM.docx (58 kb)
Characterization results of the samples and comparative study of activity results are presented in the supporting information. (DOCX 58 KB)

References

  1. 1.
    Rinesch T, Mottweiler J, Puche M, Concepción P, Corma A, Bolm C (2017) ACS Sustain Chem Eng 5:9818CrossRefGoogle Scholar
  2. 2.
    Sudarsanam P, Zhong R, Bosch SV, Coman SM, Parvulescu VI, Sels BF (2018) Chem Soc Rev 47:8349CrossRefGoogle Scholar
  3. 3.
    Deng W, Zhang H, Wu X, Li R, Zhang Q, Wang Y (2015) Green Chem 17:5009CrossRefGoogle Scholar
  4. 4.
    Baguc IB, Celebi M, Karakas K, Ertas IE, Keles MN, Kaya M, Zahmakiran M (2017) Chem Select 2:10191Google Scholar
  5. 5.
    Fu W, Yue L, Duan X, Li J, Lu G (2016) Green Chem 18:6136CrossRefGoogle Scholar
  6. 6.
    Jha A, Rode CV (2013) New J Chem 37:2669CrossRefGoogle Scholar
  7. 7.
    Jha A, Rode CV, Patil KR (2013) Chem Plus Chem 78:1384Google Scholar
  8. 8.
    Ramana S, Govinda Rao B, Venkataswamy P, Rangaswamy A, Reddy BM (2016) J Mol Catal A Chem 415:113CrossRefGoogle Scholar
  9. 9.
    Behling R, Valange S, Chatel G (2016) Green Chem 18:1839CrossRefGoogle Scholar
  10. 10.
    Behera GC, Parida K (2012) Appl Catal A413:245CrossRefGoogle Scholar
  11. 11.
    Ma R, Xu Y, Zhang X (2015) Chem Sus Chem 8:24CrossRefGoogle Scholar
  12. 12.
    Wu X, Guo S, Zhang J (2015) Chem Commun 51:6318CrossRefGoogle Scholar
  13. 13.
    Rodriguez MM, Saravanamurugan S, Kegnæs S, Riisager A (2015) Top Catal 58:1036CrossRefGoogle Scholar
  14. 14.
    Govinda Rao B, Sudarsanam P, Rangaswamy A, Reddy BM (2015) Catal Lett 145:1436CrossRefGoogle Scholar
  15. 15.
    Jha A, Mhamane D, Suryawanshi AB, Joshi SM, Shaikh P, Biradar NS, Ogale S, Rode CV (2014) Catal Sci Technol 4:1771CrossRefGoogle Scholar
  16. 16.
    Saha S, Hamid SBA (2017) RSC Adv 7:9914CrossRefGoogle Scholar
  17. 17.
    Yuan Z, Chen S, Liu B (2017) J Mater Sci 52:164CrossRefGoogle Scholar
  18. 18.
    Saha S, Hamid SBA (2016) RSC Adv 6:96314CrossRefGoogle Scholar
  19. 19.
    Saha S, Hamid SBA, Ali TH (2017) Appl Surf Sci 394:205CrossRefGoogle Scholar
  20. 20.
    Govinda Rao B, Sudarsanam P, Nallappareddy PRG, Reddy MY, Rao TV, Reddy BM (2017) Catal Commun 101:57CrossRefGoogle Scholar
  21. 21.
    Wang WW, Yu WZ, Du PP, Xu H, Jin Z, Si R, Ma C, Shi S, Jia CJ, Yan CH (2017) ACS Catal 7:1313CrossRefGoogle Scholar
  22. 22.
    Govinda Rao B, Jampaiah D, Venkataswamy P, Reddy BM (2016) Chem Select 1:6681Google Scholar
  23. 23.
    Rodriguez JA, Grinter DC, Liu Z, Palomino RM, Senanayake SD (2017) Chem Soc Rev 46:1824CrossRefGoogle Scholar
  24. 24.
    Shang D, Cai W, Zhao W, Bu Y, Zhong Q (2014) Catal Lett 144:538–544CrossRefGoogle Scholar
  25. 25.
    Mukherjee D, Govinda Rao B, Reddy BM (2016) Appl Catal B Environ 197:105CrossRefGoogle Scholar
  26. 26.
    Cao D, Cai W, Li Y, Li C, Yu H, Zhang S, Qu F (2017) Catal Lett 147:2929CrossRefGoogle Scholar
  27. 27.
    Liu B, Li C, Zhang G, Yao X, Chuang SSC, Li Z (2018) ACS Catal 8:10446CrossRefGoogle Scholar
  28. 28.
    Devaiah D, Reddy LH, Park SE, Reddy BM (2018) Cat Rev Sci Eng 60:177CrossRefGoogle Scholar
  29. 29.
    Bonk A, Remhof A, Maier AC, Trottmann M, Schlupp MVF, Battaglia C, Vogt UF (2016) J Phys Chem C 120:118CrossRefGoogle Scholar
  30. 30.
    Devaiah D, Tsuzuki T, Aniz CU, Reddy BM (2015) Catal Lett 145:1206CrossRefGoogle Scholar
  31. 31.
    Li J, Liu X, Zhan W, Guo Y, Guo Y, Lu G (2016) Catal Sci Technol 6:897CrossRefGoogle Scholar
  32. 32.
    Wang SP, Zhang TY, Su Y, Wang SR, Zhang SM, Zhu BL, Wu SH (2008) Catal Lett 121:71CrossRefGoogle Scholar
  33. 33.
    Govinda Rao B, Sudarsanam P, Nallappareddy PRG, Reddy MY, Rao TV, Reddy BM (2018) Res Chem Intermed 44:6151CrossRefGoogle Scholar
  34. 34.
    Katta L, Sudarsanam P, Thrimurthulu G, Reddy BM (2010) Appl Catal B 101:101CrossRefGoogle Scholar
  35. 35.
    Singhania A, Gupta SM (2018) Catal Lett 148:2001Google Scholar
  36. 36.
    Sudarsanam P, Hillary B, Mallesham B, Rao BG, Amin MH, Nafady A, Alsalme AM, Reddy BM, Bhargava SK (2016) Langmuir 32:2208CrossRefGoogle Scholar
  37. 37.
    Govinda Rao B, Sudarsanam P, Mallesham B, Reddy BM (2016) RSC Adv 6:95252CrossRefGoogle Scholar
  38. 38.
    Sudarsanam P, Hillary B, Deepa DK, Amin MH, Mallesham B, Reddy BM, Bhargava SK (2015) Catal Sci Technol 5:3496CrossRefGoogle Scholar
  39. 39.
    Gong X, Liu B, Kang B, Xu G, Wang Q, Jia C, Zhang J (2017) Mol Catal 436:90CrossRefGoogle Scholar
  40. 40.
    Lin X, Zhao S, Fu L, Luo Y, Zhu R, Liu Z (2017) Mol Catal 437:18CrossRefGoogle Scholar
  41. 41.
    Xie Q, Zhao Y, Guo H, Lu A, Zhang X, Wang L, Chen MS, Peng DL (2014) ACS Appl Mater Interfaces 6:421CrossRefGoogle Scholar
  42. 42.
    Zhang H, Gu F, Liu Q, Gao J, Jia L, Zhu T, Chen Y, Zhong Z, Su F (2014) RSC Adv 4:14879CrossRefGoogle Scholar
  43. 43.
    Liwei J, Meiqing S, Jun W, Xia C, Jiaming W, Zhichang H (2008) J Rare Earths 6:523Google Scholar
  44. 44.
    Mandala S, Santra C, Bando KK, James OO, Maityc S, Mehtad D, Chowdhury B (2013) J Mol Catal A 378:47CrossRefGoogle Scholar
  45. 45.
    Pengpanich S, Meeyoo V, Rirksomboon T, Bunyakiat K (2002) Appl Catal A 234:221CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Catalysis and Fine Chemicals DepartmentCSIR—Indian Institute of Chemical TechnologyHyderabadIndia
  2. 2.Academy of Scientific and Innovative Research, CSIR-IICTHyderabadIndia

Personalised recommendations