Catalysis Letters

, Volume 149, Issue 3, pp 882–890 | Cite as

Fabrication of Ag3PO4/TiO2 Composite and Its Photodegradation of Formaldehyde Under Solar Radiation

  • Lu Zhang
  • Deyou Yu
  • Minghua WuEmail author
  • Junxiong Lin


In order to improve the photocatalytic degradation performance of Ag3PO4 and reduce the cost of photocatalyst made of Ag3PO4, a kind of Ag3PO4/TiO2 composite was successfully fabricated via a simply precipitation method for the Ag3PO4 nanoparticles being loaded on the surface of commercial titanium dioxide (P25) to form a heterostructure. The Ag3PO4/TiO2 composite were characterized by FT-IR, XRD, XPS, FE-SEM, HR-TEM, DRS and PL and applied for the degradation of formaldehyde solution under solar radiation. The results showed that the degradation rat of Ag3PO4/TiO2 composite (0.01796 min−1) was much higher than that of pure Ag3PO4 (0.00775 min−1), indicating that the Ag3PO4/TiO2 composite possessed better photocatalytic degradation activity for the formaldehyde solution than pure Ag3PO4. The composite significantly decreased the dosage of silver for photocatalyst under solar radiation, thereby reduced the cost of the photocatalyst made from silver.

Graphical Abstract


Ag3PO4 Ag3PO4/TiO2 composite Photocatalytic formaldehyde 



This study was kindly supported by Key Research and Development Program of Science and Technology Department of Zhejiang Province (NO. 2018C03004).


  1. 1.
    Ensafi AA, Honarmand E (2005) Anal Sci 21(5):545CrossRefGoogle Scholar
  2. 2.
    Jones SB, Terry CM, And TEL (1999) Anal Chem 71(18):4030CrossRefGoogle Scholar
  3. 3.
    Tang X, Bai Y, Duong A (2009) Environ Int 35(8):1210CrossRefGoogle Scholar
  4. 4.
    Yan T, Guan W, Li W (2014) RSC Adv 4(70):37095CrossRefGoogle Scholar
  5. 5.
    Guo X, Chen C, Yin S (2015) J Alloys Compd 619:293CrossRefGoogle Scholar
  6. 6.
    Hua X, Jin Y, Wang K (2014) Catal Commun 52(8):49CrossRefGoogle Scholar
  7. 7.
    Yi Z, Ye J, Kikugawa N (2010) Nat Mater 9(7):559CrossRefGoogle Scholar
  8. 8.
    Zhao FM, Pan L, Wang S (2014) Appl Surf Sci 317:833CrossRefGoogle Scholar
  9. 9.
    Vu TA, Dao CD, Hoang TT T (2013) Mater Lett 92(1):57CrossRefGoogle Scholar
  10. 10.
    Lim YWL, Tang Y, Cheng YH (2010) Nanoscale 2(12):2751CrossRefGoogle Scholar
  11. 11.
    Fujishima A, Honda K (1972) Nature 37(1):238Google Scholar
  12. 12.
    Ohno T, Sarukawa K, Tokieda K (2001) J Catal 203(1):82CrossRefGoogle Scholar
  13. 13.
    Pan L, Zhang J, Jia Xu, Ma Y-H, Zhang X, Wang L, Zou J-J (2017) Chin J Catal 38(2):253CrossRefGoogle Scholar
  14. 14.
    Cong Y, Zhang J, Chen F (2007) J Phys Chem C 111(19):6976CrossRefGoogle Scholar
  15. 15.
    Yu J, Dai G, Huang B (2009) J Phys Chem C 113(37):16394CrossRefGoogle Scholar
  16. 16.
    Tong ZW, Yang D, Sun YY (2015) Phys Chem Chem Phys 17(18):12199CrossRefGoogle Scholar
  17. 17.
    Wang M, Han J, Xiong H (2015) Langmuir 31(22):6220CrossRefGoogle Scholar
  18. 18.
    Wang X, Utsumi M, Yang Y (2015) Appl Surf Sci 325:1CrossRefGoogle Scholar
  19. 19.
    Pan L, Wang S, Xie J (2016) Nano Energy 28:296CrossRefGoogle Scholar
  20. 20.
    Xie J, Yang Y, He H (2015) Appl Surf Sci 355:921CrossRefGoogle Scholar
  21. 21.
    Liu R, Hu P, Chen S (2012) Appl Surf Sci 258(24):9805CrossRefGoogle Scholar
  22. 22.
    Teng W, Li X, Zhao Q (2013) J Mater Chem A 1(32):9060CrossRefGoogle Scholar
  23. 23.
    Yang ZM, Huang GF, Huang WQ (2014) J Mater Chem A 2(6):1750CrossRefGoogle Scholar
  24. 24.
    Thomas M, Ghosh SK, George KC (2002) Mater Lett 56(4):386CrossRefGoogle Scholar
  25. 25.
    Pelavin M, Hendrickson DN, Hollander JM (1970) J Phys Chem 74(5):1116CrossRefGoogle Scholar
  26. 26.
    Zhang H, Wang G, Chen D (2008) Chem Mater 20(20):6543CrossRefGoogle Scholar
  27. 27.
    Li Y, Yu L, Li N (2015) J Colloid Interface Sci 450:246CrossRefGoogle Scholar
  28. 28.
    Serpone N, Maruthamuthu P, Pichat P (1995) J Photochem Photobiol A 85(3):247CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Engineering Research Center for Eco-Dyeing and Finishing of Textile, Ministry of EducationZhejiang Sci-Tech UniversityHangzhouPeople’s Republic of China
  2. 2.Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of EducationZhejiang Sci-Tech UniversityHangzhouPeople’s Republic of China

Personalised recommendations