Advertisement

Catalysis Letters

, Volume 149, Issue 2, pp 522–532 | Cite as

Synthesis of Fe–Co–Ce/Zeolite A-3 Catalysts and their Selectivity to Light Olefins for Fischer–Tropsch Synthesis in Fixed-Bed Reactor

  • Reza Nohtani
  • Ali Akbar MirzaeiEmail author
  • Amir Eshraghi
Article
  • 65 Downloads

Abstract

In the present work, Fe–Co–Ce/Zeolite A-3 catalysts were prepared, using the impregnation method and applied in Fischer–Tropsch Synthesis (FTS). The catalyst’s performance was investigated by changing the catalyst’s composition and process conditions. Increased pressure from 2 to 10 and H2/CO ratio from 1 to 4 were accompanied by decreased olefin to paraffin proportion and increased \({\text{C}}_{4}^{+}\) production. Decline in the GHSV led to decrease in methane and light olefin generation, and a significant increase in the number of carbon in the products. The catalysts were characterized by SEM, BET, STA and XRD. Catalyst composition was changed with different loading of support (Zeolite A-3) and metals (Fe, Co, Ce). Finally, 45%Fe–45%Co–10%Ce/60%Zeolite A-3 catalyst was judged to be the best composition to obtain the optimal operation conditions (high selectivity towards light olefins and low selectivity towards methane, simultaneously).

Graphical Abstract

Keywords

Catalyst composition Reaction conditions FT reaction Light olefins selectivity 

Notes

Acknowledgements

This work is financially and instrumentally supported by the University of Sistan and Baluchestan.

References

  1. 1.
    Sauciuc A, Abosteif Z, Weber G, Potetz A, Rauch R, Hofbauer H, Schaub G, Dumitrescu L (2012) Biomass Convers Biorefin 2:253Google Scholar
  2. 2.
    Ji Y-Y, Xiang H-W, Yang J-L, Xu Y-Y, Li Y-W, Zhong B (2001) Appl Catal 214:77Google Scholar
  3. 3.
    Maitlis PM, de Klerk A (2013) Greener Fischer–Tropsch processes for fuels and feedstocks. Wiley, New YorkGoogle Scholar
  4. 4.
    Xu J, Yang Y, Li Y-W (2013) Curr Opin Chem Eng 2:354Google Scholar
  5. 5.
    Akbari M, Mirzaei AA, Atashi H, Arsalanfar M (2018) J Taiwan Inst Chem Eng 91:396Google Scholar
  6. 6.
    Jahangiri H, Bennett J, Mahjoubi P, Wilson K, Gu S (2014) Catal Sci Technol 4:2210Google Scholar
  7. 7.
    Venter J, Kaminsky M, Geoffroy GL, Vannice MA (1987) J Catal 103:450Google Scholar
  8. 8.
    Duvenhage D, Coville N (2005) Appl Catal 289:231Google Scholar
  9. 9.
    Feyzi M, Khodaei MM, Shahmoradi J (2015) Int J Hydrogen Energy 40:14816Google Scholar
  10. 10.
    Liu Y, Teng B-T, Guo X-H, Li Y, Chang J, Tian L, Hao X, Wang Y, Xiang H-W, Xu Y-Y (2007) J Mol Catal A Chem 272:182Google Scholar
  11. 11.
    Van Der Laan GP, Beenackers A (1999) Catal Rev 41:255Google Scholar
  12. 12.
    Hu J, Yu F, Lu Y (2012) Catal 2:303Google Scholar
  13. 13.
    Dry M (1981) Catal Sci Technol 1:159Google Scholar
  14. 14.
    Van de Loosdrecht J, Botes F, Ciobica I, Ferreira A, Gibson P, Moodley D, Saib A, Visagie J, Weststrate C (2013) Fischer–Tropsch synthesis (catalysts and chemistry)Google Scholar
  15. 15.
    Anderson RB, Kölbel H, Rálek M (1984) Academic Press 35:498Google Scholar
  16. 16.
    Özkara-Aydınoğlu Ş, Ataç Ö, Gül ÖF, Kınayyiğit Ş, Şal S, Baranak M, Boz İ (2012) Chem Eng J 181:581Google Scholar
  17. 17.
    Herranz T, Rojas S, Pérez-Alonso FJ, Ojeda M, Terreros P, Fierro JLG (2006) J Catal 243:199Google Scholar
  18. 18.
    Janani H, Rezvani AR, Grivani GH, Mirzaei AA (2015) J Inorg Organomet Polym Mater 5:1169Google Scholar
  19. 19.
    Ma W-P, Ding Y-J, Lin L-W (2004) Ind Eng Chem Res 43:2391Google Scholar
  20. 20.
    Mohamadnasab Omran S, Tavasoli A, Zamani Y (2015) Pet Coal 57:1337Google Scholar
  21. 21.
    Pardo-Tarifa F, Cabrera S, Sanchez-Dominguez M, Boutonnet M (2017) Int J Hydrogen Energy 42:9754Google Scholar
  22. 22.
    Sun B, Lin J, Xu K, Pei Y, Yan S, Qiao M, Zhang X, Zong B (2013) Chem Cat Chem 5:3857Google Scholar
  23. 23.
    Xiong H, Zhang Y, Liew K, Li J (2008) J Mol Catal A Chem 295:68Google Scholar
  24. 24.
    Macheli L, Roy A, Carleschi E, Doyle BP, van Steen E (2018) Catal TodayGoogle Scholar
  25. 25.
    Karandikar PR, Lee YJ, Kwak G, Woo MH, Park SJ, Park H-G, Ha K-S, Jun KW (2014) J Phys Chem C 118:21978Google Scholar
  26. 26.
    Yu L, Liu X, Fang Y, Wang C, Sun Y (2013) Fuel 112:483Google Scholar
  27. 27.
    Sartipi S, Makkee M, Kapteijn F, Gascon J (2014) Catal Sci Technol 4:893Google Scholar
  28. 28.
    Peng X, Cheng K, Kang J, Gu B, Yu X, Zhang Q, Wang Y (2015) Angew Chem Int Ed 54:4553Google Scholar
  29. 29.
    Golestan S, Mirzaei AA, Atashi H (2017) Int J Hydrogen Energy 42:9816Google Scholar
  30. 30.
    Hutchings G, Mirzaei A, Joyner R, Siddiqui M, Taylor S (1998) Appl Catal A 166:143Google Scholar
  31. 31.
    Hutchings GJ, Mirzaei AA, Joyner RW, Siddiqui MRH, Taylor SH (1996) Catal Lett 42:21Google Scholar
  32. 32.
    Mirzaei AA, Shaterian HR, Habibi M, Hutchings GJ, Taylor SH (2003) Appl Catal A 253:499Google Scholar
  33. 33.
    Mirzaei AA, Shaterian HR, Joyner RW, Stockenhuber M, Taylor SH, Hutchings GJ (2003) Catal Commun 4:17Google Scholar
  34. 34.
    Mirzaei AA, Shaterian HR, Kaykhaii M (2005) Appl Surf Sci 239:246Google Scholar
  35. 35.
    Mirzaei AA, Shaterian HR, Taylor SH, Hutchings GJ (2003) Catal Lett 87:103Google Scholar
  36. 36.
    Mirzaei AA, Vahid S, Feyzi M (2008) Adv Phys Chem 1:1687Google Scholar
  37. 37.
    Taylor SH, Hutchings GJ, Mirzaei AA (1999) Chem Commun 1:1373Google Scholar
  38. 38.
    Taylor SH, Hutchings GJ, Mirzaei AA (2003) Catal Today 84:113Google Scholar
  39. 39.
    Whittle DM, Mirzaei AA, Hargreaves JS, Joyner RW, Kiely CJ, Taylor SH, Hutchings GJ (2002) Phys Chem Chem Phys 4:5915Google Scholar
  40. 40.
    Moradi G, Basir M, Taeb A, Kiennemann A (2003) Catal Commun 4:27Google Scholar
  41. 41.
    Parlett CM, Bruce DW, Hondow NS, Lee AF, Wilson K (2011) ACS Catal 1:636Google Scholar
  42. 42.
    Feyzi M, Mirzaei AA, Bozorgzadeh HR (2010) J Nat Gas Chem 19:341Google Scholar
  43. 43.
    Barrault J, Forquy C, Perrichon V (1983) Appl Catal 5:119Google Scholar
  44. 44.
    Krishna KR, Bell AT (1993) J Catal 139:104Google Scholar
  45. 45.
    Pendyala VRR, Shafer WD, Jacobs G, Davis BH (2014) Catal Lett 144:1088Google Scholar
  46. 46.
    Atashi H, Siami F, Mirzaei A, Sarkari M (2010) J Ind Eng Chem 16:952Google Scholar
  47. 47.
    Gaube J, Herzog K, König L, Schliebs B (1986) Chem Ing Tech 58:682Google Scholar
  48. 48.
    Choudhury HA, Moholkar VS (2013) Int J Sci Eng Technol 2:31Google Scholar
  49. 49.
    Jalama K (2015) Proceedings of the World Congress on engineering and computer scienceGoogle Scholar
  50. 50.
    Yang JH, Kim H-J, Chun DH, Lee H-T, Hong J-C, Jung H, Yang J-I (2010) Fuel Process Technol 91:285Google Scholar
  51. 51.
    Bukur DB, Lang X, Akgerman A, Feng Z (1997) Ind Eng Chem Res 36:2580Google Scholar
  52. 52.
    Madon RJ, Iglesia E (1993) J Catal 139:576Google Scholar
  53. 53.
    Tristantini D, Lögdberg S, Gevert B, Borg Ø, Holmen A (2007) Fuel Process Technol 88:643Google Scholar
  54. 54.
    Abbaslou RMM, Mohammadzadeh JSS, Dalai AK (2009) Fuel Process Technol 90:849Google Scholar
  55. 55.
    Kim S-M, Bae JW, Lee Y-J, Jun K-W (2008) Catal Commun 9:2269Google Scholar
  56. 56.
    Park C, Baker R (2000) J Catal 190:104Google Scholar
  57. 57.
    Caeiro G, Carvalho R, Wang X. Lemos M, Lemos F, Guisnet M, Ribeiro F (2006) J Mol Catal A Chem 255:131Google Scholar
  58. 58.
    Bolton AP (1976) Hydrocracking, isomerization and other industrial processes. American Chemical Society, Washington DCGoogle Scholar
  59. 59.
    Chen N, Garwood W (1986) Catal Rev Sci Eng 28:185Google Scholar
  60. 60.
    Corma A (1995) Chem Rev 95:559Google Scholar
  61. 61.
    Arsalanfar M, Mirzaei AA, Bozorgzadeh HR, Atashi H, Shahriari S (2012) J Nat Gas Sci Eng 9:119Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Reza Nohtani
    • 1
  • Ali Akbar Mirzaei
    • 1
    Email author
  • Amir Eshraghi
    • 1
  1. 1.Department of Chemistry, Faculty of SciencesUniversity of Sistan and BaluchestanZahedanIran

Personalised recommendations