Catalysis Letters

, Volume 149, Issue 2, pp 610–618 | Cite as

A Novel Thermal Stable Carbonyl Reductase from Bacillus cereus by Gene Mining as Biocatalyst for β-Carbonyl Ester Asymmetric Reduction Reaction

  • Yan-Li Qin
  • Tao Ruan
  • He-Shuai Hou
  • Ya-Li Hou
  • Zhong-Hua YangEmail author
  • Can QuanEmail author


Carbonyl reductase, as biocatalyst, is very important to chiral alcohols production through asymmetric reduction of carbonyl compound. A novel thermal stable carbonyl reductase from Bacillus cereus (BcCR) dependant on NADPH was obtained through a new genome mining strategy proposed in this work. By analyzing its amino acid sequence and structure, the BcCR should be a thermal stability and wide pH tolerance carbonyl reductase. Its gene was cloned by PCR with B. cereus genomic DNA as template. Its heterologous expression system, E. coli BL21 (DE3) plysS/pET28a-bccr, was constructed, and BcCR was successfully expressed. Enzymatic properties show that at 57.5 °C and pH 7.0 it can reach maximum reaction rate. Its Km and Vmax to ethyl 4-chloroacetoacetate is 1.85 mmol/L and 0.22 µmol/(min·mgprotein), respectively. It can catalyze the asymmetric reduction of the β-carbonyl compound, such as ethyl 4-chloroacetoacetate to ethyl S-4-chloro-3-hydroxybutyrate. This paper proposes a practical method for discovery of new carbonyl reductases, and provides a novel enzyme as biocatalyst for asymmetric reduction of β-carbonyl compound.


Gene mining Carbonyl reductase Bacillus cereus Asymmetric reduction Chiral alcohol 



The authors acknowledge all the financial supports for this research by the National Natural Science Foundation of China (Grant No. 21376184), the Scientific Research Foundation for the Returned Overseas Chinese Scholars (State Education Ministry), Foundation from the Educational Commission of Hubei Province of China (Grant No. D20121108), the Ministry of Science and Technology of China (2017YFF0205803), and the National Institute of Metrology of China (21-AKY1615).

Compliance with Ethical Standards

Conflict of interest Statement

The authors declare no conflict of interest.

Supplementary material

10562_2018_2645_MOESM1_ESM.docx (3.1 mb)
Supplementary material 1 (DOCX 3147 KB)


  1. 1.
    Yang Z-H, Luo L, Chang X, Zhou W, Chen G-H, Zhao Y, Wang Y-J (2012) J Ind Microbiol Biotechnol 39:835–841CrossRefGoogle Scholar
  2. 2.
    Xu GC, Yu HL, Shang YP, Xu JH (2015) RSC Adv 46:22703–22711CrossRefGoogle Scholar
  3. 3.
    Luo W, Deng XX, Huo J, Ruan T, Gong ZW, Yan JB, Yang Z-H, Quan C, Cui ZF (2018) Catal Lett 148:1714–1722CrossRefGoogle Scholar
  4. 4.
    Yang Z-H, Zeng R, Yang G, Wang Y, Li LZ, Lv ZS, Yao M, Lai B (2008) J Ind Microbiol Biotechnol 35:1047–1051CrossRefGoogle Scholar
  5. 5.
    Wang YJ, Chen XP, Shen W, Liu ZQ, Zheng YG (2017) Biochem Eng J 128:54–62CrossRefGoogle Scholar
  6. 6.
    Penning TM (2015) Chem-Biol Interact 234:236–246CrossRefGoogle Scholar
  7. 7.
    Guo CX, Tang MH, Ni Y (2016) J Mol Catal B: Enzym 123:67–72CrossRefGoogle Scholar
  8. 8.
    Wang YJ, Ying BB, Shen W, Zheng RC, Zheng YG (2017) Enzyme Microb Technol 107:32–40CrossRefGoogle Scholar
  9. 9.
    Zhang YP, Wang HL, Chen LF, Wu K, Xie JL, Wei DZ (2016) J Mol Catal B: Enzym 134:51–60CrossRefGoogle Scholar
  10. 10.
    Aggarwal N, Ananthathamula R, Kumar KV, Doble M, Chadha A (2018) Mol Catal 460:40–45CrossRefGoogle Scholar
  11. 11.
    Ning CX, Su EZ, Wei DZ (2014) Arch Biochem Biophys 564:219–228CrossRefGoogle Scholar
  12. 12.
    He YC, Zhang DP, Tao ZC, Zhang X, Yang ZX (2014) Bioresour Technol 172:342–348CrossRefGoogle Scholar
  13. 13.
    Chen R, Liu X, Lin J, Wei D (2014) J Agric Chem Soc Japan 78:1350–1356Google Scholar
  14. 14.
    Guo R, Nie Y, Mu XQ, Xu Y, Xiao R (2014) J Mol Catal B: Enzym 105:66–73CrossRefGoogle Scholar
  15. 15.
    Zaparucha A, de Berardinis V, Vaxelaire-Vergne C (2018) In: Williams G, Hall M (eds) Modern biocatalysis: advances towards synthetic biological systems. Royal Society of Chemistry, CambridgeGoogle Scholar
  16. 16.
    Yu SZ, Li HX, Lu Y, Zheng GJ (2017) Appl Biochem Biotechnol 184:1319–1331CrossRefGoogle Scholar
  17. 17.
    Yang Z-H, Ruan T, Luo W, Wu Y, Zuo ZY, Hou YL, Li LL (2018) Chinese patent 201810218384.2Google Scholar
  18. 18.
    Wilson K (2001) Curr Protoc Mol Biol 56:241–245CrossRefGoogle Scholar
  19. 19.
    Cheng Y, Wei H, Sun R, Tian Z, Zheng X (2016) Anal Biochem 494:37–39CrossRefGoogle Scholar
  20. 20.
    Kavanagh KL, Jornvall H, Persson B, Oppermann U (2008) Cell Mol Life Sci 65:3895–3906CrossRefGoogle Scholar
  21. 21.
    Fukuda Y, Sakuraba H, Araki T, Ohshima T, Yoneda K (2016) Enzyme Microb Technol 91:17–25CrossRefGoogle Scholar
  22. 22.
    Wang Q, Shen L, Ye T, Cao D, Chen R, Pei X, Xie T, Li Y, Gong W, Yin X (2012) Bioresour Technol 123:690–694CrossRefGoogle Scholar
  23. 23.
    Wang LJ, Li CX, Ni Y, Zhang J, Liu X, Xu JH (2011) Bioresour Technol 102:7023–7028CrossRefGoogle Scholar
  24. 24.
    Huang L, Xu JH, Yu HL (2015) J Biotechnol 203:54–61CrossRefGoogle Scholar
  25. 25.
    Cao H, Mi L, Ye Q, Zang G, Yan M, Wang Y, Zhang Y, Li X, Xu L, Xiong J, Ouyang P, Ying H (2011) Bioresour Technol 102:1733–1739CrossRefGoogle Scholar
  26. 26.
    Zhao FJ, Pei XQ, Ren ZQ, Wu Z-L (2016) Appl Microbiol Biotechnol 100:3567–3575CrossRefGoogle Scholar
  27. 27.
    Wei P, Gao JX, Zheng GW, Wu H, Zong MH, Lou WY (2016) J Biotechnol 230:54–62CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringWuhan University of Science and TechnologyWuhanChina
  2. 2.Division of Chemical Metrology and Analytical ScienceNational Institute of MetrologyBeijingChina
  3. 3.Key Laboratory of Hubei Province for Coal Conversion and New Carbon MaterialsWuhan University of Science and TechnologyWuhanChina

Personalised recommendations