Advertisement

Mesoporous SBA-15/PIDA as a Dendrimer Zwitterionic Amino Acid-Type Organocatalyst for Three-Component Indazolophtalazine Synthesis

  • Esmail DoustkhahEmail author
  • Ali BaghbanEmail author
  • M. Hussein N. AssadiEmail author
  • Rafael Luque
  • Sadegh Rostamnia
Article
  • 25 Downloads

Abstract

A zwitterionic amino acid-like N-propyliminodiacetic acid (PIDA) organocatalyst supported to a heterogeneous surface (SBA-15/PIDA) based on iminodiacetic acid and mesoporous SBA-15, respectively was synthesized. The mesoporous hybrid catalyst was successfully characterized by SEM, TEM, TGA, FTIR, and EDS and employed in the three-component reaction of dimedone, aldehydes and phtalhydrazide for the synthesis of indazolophtalazinetrione. SBA-15/PIDA exhibited excellent catalytic activity in the reaction and showed highly recyclable and recoverable features in consecutive reaction runs. According to ab initio calculations, the recoverability of SBA-15/PIDA catalyst is attributed to the strong covalent bonding between PIDA and SBA-15.

Graphical Abstract

Keywords

Zwitterionic amino acid N-propyliminodiacetic acid (PIDA) Organocatalyst Indazolophtalazinetrione Density functional theory (DFT) 

Notes

Acknowledgements

Ali Baghban acknowledges Payame Nur University for the financial support of the research. The publication has been prepared with support of RUDN University Program 5-100. The computational resources were provided by the Integrated Materials Design Centre at the University of New South Wales, Sydney, Australia.

References

  1. 1.
    Rostamnia S, Doustkhah E (2014) RSC Adv 4:28238–28248CrossRefGoogle Scholar
  2. 2.
    Alam MN, Roy N, Mandal D, Begum NA (2013) RSC Adv 3:11935–11956CrossRefGoogle Scholar
  3. 3.
    Carril M, SanMartin R, Dominguez E, Tellitu I (2007) Green Chem 9:315–317CrossRefGoogle Scholar
  4. 4.
    Elwahy AHM, Shaaban MR (2015) RSC Adv 5:75659–75710CrossRefGoogle Scholar
  5. 5.
    Liu J, Chen L, Cui H, Zhang J, Zhang L, Su CY (2014) Chem Soc Rev 43:6011–6061CrossRefGoogle Scholar
  6. 6.
    Guo Z, Liu B, Zhang Q, Deng W, Wang Y, Yang Y (2014) Chem Soc Rev 43:3480–3524CrossRefGoogle Scholar
  7. 7.
    Tucker JL (2006) Org Process Res Dev 10:315–319CrossRefGoogle Scholar
  8. 8.
    Ferrero L, Sangiorgi G, Ferrini BS, Perrone MG, Moscatelli M, D’Angelo L, Rovelli G, Ariatta A, Truccolo R, Bolzacchini E (2013) Environ Sci Technol 47:3856–3864CrossRefGoogle Scholar
  9. 9.
    Doustkhah E, Rostamnia S, Hassankhani A (2016) J Porous Mater 23:549–556CrossRefGoogle Scholar
  10. 10.
    Rostamnia S, Doustkhah E (2016) J Mol Catal A 411:317–324CrossRefGoogle Scholar
  11. 11.
    Doustkhah E, Rostamnia S (2016) Mater Chem Phys 177:229–235CrossRefGoogle Scholar
  12. 12.
    Doustkhah E, Rostamnia S, Imura M, Ide Y, Mohammadi S, Hyland CJT, You J, Tsunoji N, Zeynizadeh B, Yamauchi Y (2017) RSC Adv 7:56306–56310CrossRefGoogle Scholar
  13. 13.
    Sun LB, Liu XQ, Zhou HC (2015) Chem Soc Rev 44:5092–5147CrossRefGoogle Scholar
  14. 14.
    Ryoo R, Ko CH, Kruk M, Antochshuk V, Jaroniec M (2000) J Phys Chem B 104:11465–11471CrossRefGoogle Scholar
  15. 15.
    Zhao D, Sun J, Li Q, Stucky GD (2000) Chem Mater 12:275–279CrossRefGoogle Scholar
  16. 16.
    Han YJ, Kim JM, Stucky GD (2000) Chem Mater 12:2068–2069CrossRefGoogle Scholar
  17. 17.
    Lashaki MJ, Sayari A (2018) Chem Eng J 334:1260–1269CrossRefGoogle Scholar
  18. 18.
    Jing F, Katryniok B, Paul S, Fang L, Liebens A, Shen M, Hu B, Dumeignil F, Pera-Titus M (2017) ChemCatChem 9:258–262CrossRefGoogle Scholar
  19. 19.
    Castanheiro J, Fonseca I, Ramos A, Vital J (2017) Microporous Mesoporous Mater 249:16–24CrossRefGoogle Scholar
  20. 20.
    Rostamnia S, Doustkhah E, Zeynizadeh B (2016) Microporous Mesoporous Mater 222:87–93CrossRefGoogle Scholar
  21. 21.
    Rostamnia S, Doustkhah E (2015) Synlett 26:1345–1347CrossRefGoogle Scholar
  22. 22.
    Ferré M, Pleixats R, Wong Chi Man M, Cattoën X (2016) Green Chem 18:881–922CrossRefGoogle Scholar
  23. 23.
    Rostamnia S, Doustkhah E, Nuri (2013) J Fluor Chem 153:1–6CrossRefGoogle Scholar
  24. 24.
    Rostamnia S, Doustkhah E (2014) Tetrahedron Lett 55:2508–2512CrossRefGoogle Scholar
  25. 25.
    Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279:548–552CrossRefGoogle Scholar
  26. 26.
    Doustkhah E, Rostamnia S, Hossieni HG, Luque R (2017) ChemistrySelect 2:329–334CrossRefGoogle Scholar
  27. 27.
    Mulik A, Chandam D, Patil P, Patil D, Jagdale S, Sankpal S, Deshmukh M (2015) J Heterocycl Chem 52:931–937CrossRefGoogle Scholar
  28. 28.
    Kresse G, Joubert D (1999) Phys Rev B 59:1758–1775CrossRefGoogle Scholar
  29. 29.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  30. 30.
    Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78:1396–1396CrossRefGoogle Scholar
  31. 31.
    Kresse G, Furthmüller J (1996) Comput Mater Sci 6:15–50CrossRefGoogle Scholar
  32. 32.
    Savin A, Silvi B, Colonna F (1996) Can J Chem 74:1088–1096CrossRefGoogle Scholar
  33. 33.
    Maintz S, Deringer VL, Tchougréeff AL, Dronskowski RJ (2013) Comput Chem 34:2557–2567CrossRefGoogle Scholar
  34. 34.
    Maintz S, Deringer VL, Tchougréeff AL, Dronskowski RJ (2016) Comput Chem 37:1030–1035CrossRefGoogle Scholar
  35. 35.
    Liu S, Pedersen LG (2009) J Phys Chem A 113:3648–3655CrossRefGoogle Scholar
  36. 36.
    Assadi MHN, Sahajwalla V (2014) Chem Phys 443:107–111CrossRefGoogle Scholar
  37. 37.
    Sayyafi M, Seyyedhamzeh M, Khavasi HR, Bazgir A (2008) Tetrahedron 64:2375–2378CrossRefGoogle Scholar
  38. 38.
    Doustkhah E, Rostamnia S (2016) J Colloid Interface Sci 478:280–287CrossRefGoogle Scholar
  39. 39.
    Tayebee R, Jomei M, Maleki B, Razi MK, Veisi H, Bakherad M (2015) J Mol Liq 206:119–128CrossRefGoogle Scholar
  40. 40.
    Hasaninejed A, Kazerooni MR, Zare A (2012) Catal Today 196:148–155CrossRefGoogle Scholar
  41. 41.
    Chate AV, Bhadke PK, Khande MA, Sangshetti JN, Gill CH (2017) Chin Chem Lett 28:1577–1582CrossRefGoogle Scholar
  42. 42.
    Motokura K, Tada M, Iwasawa Y (2008) Chem Asian J 3:1230–1236CrossRefGoogle Scholar
  43. 43.
    Corma A, Boronat M, Climent MJ, Iborra S, Montón R, Sabater MJ (2011) Phys Chem Chem Phys 13:17255–17261CrossRefGoogle Scholar
  44. 44.
    Chen H, Wang Y, Wang Q, Li J, Yang S, Zhu Z (2014) Sci Rep 4:6475CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Young Researchers and Elite Club, Maragheh BranchIslamic Azad UniversityMaraghehIran
  2. 2.Department of Chemistry, Faculty of SciencePayame Noor UniversityTehranIran
  3. 3.Center for Green Research on Energy and Environmental Materials (GREEN)International Center for Materials Nanoarchitectonics (MANA)TsukubaJapan
  4. 4.School of Materials Science and EngineeringUniversity of New South WalesSydneyAustralia
  5. 5.Departamento de Química OrgánicaUniversidad de CórdobaCordovaSpain
  6. 6.Peoples Friendship University of Russia (RUDN University)MoscowRussia
  7. 7.Organic and Nano Group (ONG), Department of Chemistry, Faculty of ScienceUniversity of MaraghehMaraghehIran

Personalised recommendations