Advertisement

Catalysis Letters

, Volume 149, Issue 2, pp 574–579 | Cite as

Organocatalyzed cross-dehydrogenative coupling for C(sp3)–O bonds formation: a rapid access to α-aminoxyl isochromans

  • Yuli Zhou
  • Jingwen Chen
  • Ahmed Ali Elsayed
  • Zhiguo ZhangEmail author
  • Zongbi Bao
  • Qiwei Yang
  • Yiwen Yang
  • Qilong Ren
Article
  • 117 Downloads

Abstract

Tetrabutyl ammonium iodide catalyzed cross-dehydrogenative coupling reaction between α-C(sp3)–H of isochromans and N-hydroxyphathalimide has been achieved using tert-butylhydroxyperoxide as the terminal oxidant. This method offers rapid access to prevalent α-aminoxyl isochroman architectures. A diverse of synthetic isochromans was tolerated with this protocol, giving the corresponding product in moderate to good yields.

Graphical Abstract

Keywords

Organocatalysis α-Aminoxyl isochromans C–O bond formation TBAI/TBHP 

Notes

Acknowledgements

We are grateful for financial support from the National Key R&D Program of China (Grant Number 2016YFA0202900), the National Natural Science Foundation of China (Grant Numbers 21878266, 21722609), the Fundamental Research Funds for the Central Universities (Grant Number 2018FZA4021).

Supplementary material

10562_2018_2640_MOESM1_ESM.pdf (2.5 mb)
Supplementary material 1 (PDF 2524 KB)

References

  1. 1.
    Bolognesi ML, Budriesi R, Cavalli A, Chiarini A, Gotti R, Leonardi A, Minarini A, Poggesi E, Recanatini M, Rosini M, Tumiatti V, Melchiorre C (1999) J Med Chem 20:4214CrossRefGoogle Scholar
  2. 2.
    Hanson SK, Wu RL, Silks LA (2012) Angew Chem Int Ed 14:3410CrossRefGoogle Scholar
  3. 3.
    Chatani N, Asaumi T, Yorimitsu S, Ikeda T, Kakiuchi F, Murai S (2001) J Am Chem Soc 44:10935CrossRefGoogle Scholar
  4. 4.
    Murahashi SI, Komiya N, Terai H, Nakae T (2003) J Am Chem Soc 50:15312CrossRefGoogle Scholar
  5. 5.
    Li ZP, Li CJ (2005) J Am Chem Soc 19:6968CrossRefGoogle Scholar
  6. 6.
    Li ZP, Bohle DS, Li CJ (2006) Proc Natl Acad Sci USA 24:8928CrossRefGoogle Scholar
  7. 7.
    Liu Q, Li YN, Zhang HH, Chen B, Tung CH, Wu LZ (2012) Chem-Eur J 2:620CrossRefGoogle Scholar
  8. 8.
    Xiao TB, Li LY, Lin GL, Mao ZW, Zhou L (2014) Org Lett 16:4232CrossRefGoogle Scholar
  9. 9.
    Wang XZ, Meng QY, Zhong JJ, Gao XW, Lei T, Zhao LM, Li ZJ, Chen B, Tung CH, Wu LZ (2015) Chem Commun 56:11256CrossRefGoogle Scholar
  10. 10.
    Rusch F, Unkel LN, Alpers D, Hoffmann F, Brasholz M (2015) Chem-Eur J 23:8336CrossRefGoogle Scholar
  11. 11.
    Yamaguchi T, Yamaguchi E, Itoh A (2017) Org Lett 6:1282CrossRefGoogle Scholar
  12. 12.
    Zhao YT, Huang BB, Yang C, Li B, Gou BQ, Xia WJ (2017) ACS Catal 4:2446CrossRefGoogle Scholar
  13. 13.
    Cheng DP, Wu LJ, Deng ZT, Xu XL, Yan JZ (2017) Adv Synth Catal 24:4317CrossRefGoogle Scholar
  14. 14.
    Wang H, Zhao YL, Li L, Li SS, Liu Q (2014) Adv Synth Catal 14–15:3157CrossRefGoogle Scholar
  15. 15.
    Vanjari R, Guntreddi T, Kumar S, Singh KN (2015) Chem Commun 2:366CrossRefGoogle Scholar
  16. 16.
    Huo CD, Xie HS, Wu MX, Jia XD, Wang XC, Chen FJ, Tang J (2015) Chem-Eur J 15:5723CrossRefGoogle Scholar
  17. 17.
    Gu K, Zhang ZG, Bao ZB, Xing HB, Yang QW, Ren QL (2016) Eur J Org Chem 23:3939CrossRefGoogle Scholar
  18. 18.
    Wu X, Chen DF, Chen SS, Zhu YF (2015) Eur J Org Chem 3:468CrossRefGoogle Scholar
  19. 19.
    Xie ZY, Zan X, Sun ST, Pan XH, Liu L (2016) Org Lett 16:3944CrossRefGoogle Scholar
  20. 20.
    Liu SH, Liu AX, Zhang YQ, Wang W (2017) Chem Sci 5:4044CrossRefGoogle Scholar
  21. 21.
    Zhang ZG, Gu K, Bao ZB, Xing HB, Yang QW, Ren QL (2017) Tetrahedron 22:3118CrossRefGoogle Scholar
  22. 22.
    Girard SA, Knauber T, Li CJ (2014) Angew Chem Int Ed 1:74CrossRefGoogle Scholar
  23. 23.
    Lee JM, Park EJ, Cho SH, Chang S (2008) J Am Chem Soc 25:7824CrossRefGoogle Scholar
  24. 24.
    Zhang MZ, Luo N, Long RY, Gou XT, Shi WB, He SH, Jiang Y, Chen JY, Chen TQ (2018) J Org Chem 4:2369CrossRefGoogle Scholar
  25. 25.
    Aruri H, Singh U, Kumar M, Sharma S, Aithagani SK, Gupta VK, Mignani S, Vishwakarma RA, Singh PP (2017) J Org Chem 2:1000CrossRefGoogle Scholar
  26. 26.
    Rajamanickam S, Majji G, Santra SK, Patel BK (2015) Org Lett 22:5586CrossRefGoogle Scholar
  27. 27.
    Siddaraju Y, Prabhu KR (2015) Org Biomol Chem 48:11651CrossRefGoogle Scholar
  28. 28.
    Majji G, Guin S, Rout SK, Behera A, Patel BK (2014) Chem Commun 81:12193CrossRefGoogle Scholar
  29. 29.
    Majji G, Rajamanickam S, Khatun N, Santra SK, Patel BK (2015) J Org Chem 7:3440CrossRefGoogle Scholar
  30. 30.
    Majji G, Rout SK, Rajamanickam S, Guin S, Patel BK (2016) Org Biomol Chem 35:8178CrossRefGoogle Scholar
  31. 31.
    Qiu JK, Hao WJ, Wang DC, Wei P, Sun J, Jiang B, Tu SJ (2014) Chem Commun 94:14782CrossRefGoogle Scholar
  32. 32.
    Yang Z, Hao WJ, Wang SL, Zhang JP, Jiang B, Li GG, Tu SJ (2015) J Org Chem 18:9224CrossRefGoogle Scholar
  33. 33.
    Lv YH, Sun K, Wang TT, Li G, Pu WY, Chai NN, Shen HH, Wu YT (2015) RSC Adv 88:72142CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yuli Zhou
    • 1
  • Jingwen Chen
    • 1
  • Ahmed Ali Elsayed
    • 1
    • 2
  • Zhiguo Zhang
    • 1
    Email author
  • Zongbi Bao
    • 1
  • Qiwei Yang
    • 1
  • Yiwen Yang
    • 1
  • Qilong Ren
    • 1
  1. 1.Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological EngineeringZhejiang UniversityHangzhouChina
  2. 2.Department of PhotochemistryNational Research CentreGizaEgypt

Personalised recommendations