Catalysis Letters

, Volume 149, Issue 2, pp 496–506 | Cite as

Preparation and Characterization of UiO-66-Supported Cu–Ce Bimetal Catalysts for Low-Temperature CO Oxidation

  • Jihang Yu
  • Jun YuEmail author
  • Zhecheng Wei
  • Xiaoming Guo
  • Haifang Mao
  • Dongsen MaoEmail author


A series of Zr-based metal–organic frameworks (UiO-66) supported CuO–CeO2 catalysts with various total metal loadings and various Cu/Ce ratios were prepared by using a co-impregnation method. The catalytic activities of the catalysts for low temperature oxidation of carbon monoxide were compared with that supported on the ZrO2 and mesostructured cellular foam silica. The results show that the catalysts supported by UiO-66 are expected to give the best catalytic activity, which should be attributed to the special construction of UiO-66. The samples were further characterized by XRD, TEM, N2 adsorption–desorption, H2-TPR, XPS, and in situ DRIFT. And the catalyst with a bimetallic loading of 50 wt% and Cu/Ce ratio of 3:7 (wt/wt) has the highest catalytic activity, which can be attributed to the larger amount of finely dispersed Cu species strongly interacting with CeO2, the highest amounts of oxygen vacancies and Cu+ species on the catalyst surface.

Graphical Abstract


CO oxidation CuO–CeO2 Metal–organic framework UiO-66 



This project was financially supported by the Shanghai Natural Science Foundation (13ZR1461900), and the Shanghai Innovation Program (12YZ161).


  1. 1.
    Wan H, Li D, Dai Y, Hu Y, Zhang Y, Liu L, Zhao B, Liu B, Sun K, Dong L, Chen Y (2009) Appl Catal A 360:26–32CrossRefGoogle Scholar
  2. 2.
    Menezes WG, Zielasek V, Thiel K, Hartwig A, Bäumer M (2013) J Catal 299:222–231CrossRefGoogle Scholar
  3. 3.
    Zhou X, Shen Q, Yuan K, Yang W, Chen Q, Geng Z, Zhang J, Shao X, Chen W, Xu G, Yang X, Wu K (2018) J Am Chem Soc 140:554–557CrossRefGoogle Scholar
  4. 4.
    Nie L, Mei D, Xiong H, Peng B, Ren Z, Xip H, Delariva A, Wang M, Engelhard MH, Kovarik L, Datye AK, Wang Y (2017) Science 358:1419–1423CrossRefGoogle Scholar
  5. 5.
    Hu Z, Liu X, Meng D, Guo Y, Guo Y, Lu G (2016) ACS Catal 6:2265–2279CrossRefGoogle Scholar
  6. 6.
    Tang X, Zhang B, Li Y, Xu Y, Xin Q, Shen W (2005) Appl Catal A 288:116–125CrossRefGoogle Scholar
  7. 7.
    Zhan W, Yang S, Zhang P, Guo Y, Lu G, Chisholm MF, Dai S (2017) Chem Mater 29:7323–7329CrossRefGoogle Scholar
  8. 8.
    Binder AJ, Toops TJ, Unocic RR, Parks JE 2nd, Dai S (2015) Angew Chem Int Ed 54:13263–13267CrossRefGoogle Scholar
  9. 9.
    Aguila G, Guerrero S, Araya P (2013) Appl Catal A 462–463:56–63CrossRefGoogle Scholar
  10. 10.
    Águila G, Gracia F, Araya P (2008) Appl Catal A 343:16–24CrossRefGoogle Scholar
  11. 11.
    Luo Z, Mao D, Shen W, Zheng Y, Yu J (2017) RSC Adv 7:9732–9743CrossRefGoogle Scholar
  12. 12.
    Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J (2003) Nature 423:705–714CrossRefGoogle Scholar
  13. 13.
    Zhou H, Long JR, Yaghi OM (2012) Chem Rev 112:673–674CrossRefGoogle Scholar
  14. 14.
    Lee J, Farha OK, Roberts JE, Scheidt KA, Nguyen ST, Hupp JT (2009) Chem Soc Rev 38:1450–1459CrossRefGoogle Scholar
  15. 15.
    Fu Y, Guo Y, Guo Y, Wang Y, Wang L, Zhan W, Lu G (2017) Catal Sci Technol 7:4136–4144CrossRefGoogle Scholar
  16. 16.
    Zhao Y, Zhong C, Liu CJ (2013) Catal Commun 38:74–76CrossRefGoogle Scholar
  17. 17.
    Ye JY, Liu CJ (2011) Chem Commun 47:2167–2169CrossRefGoogle Scholar
  18. 18.
    Zhang X, Hou F, Yang Y, Wang Y, Liu N, Chen D, Yang Y (2017) Appl Surf Sci 423:771–779CrossRefGoogle Scholar
  19. 19.
    Zamaro JM, Pérez NC, Miró EE, Casado C, Seoane B, Téllez C, Coronas J (2012) Chem Eng J 195–196:180–187CrossRefGoogle Scholar
  20. 20.
    Jiang HL, Liu B, Akita T, Haruta M, Sakurai H, Xu Q (2009) J Am Chem Soc 131:11302–11303CrossRefGoogle Scholar
  21. 21.
    Kandiah M, Nilsen MH, Usseglio S, Jakobsen S, Olsbye U, Tilset M, Larabi C, Quadrelli EA, Bonino F, Lillerud KP (2010) Chem Mater 22:6632–6640CrossRefGoogle Scholar
  22. 22.
    Platero-Prats AE, Mavrandonakis A, Gallington LC, Liu Y, Hupp JT, Farha OK, Cramer CJ, Chapman KW (2016) J Am Chem Soc 138:4178–4185CrossRefGoogle Scholar
  23. 23.
    Katz MJ, Brown ZJ, Colon YJ, Siu PW, Scheidt KA, Snurr RQ, Hupp JT, Farha OK (2013) Chem Commun 49:9449–9451CrossRefGoogle Scholar
  24. 24.
    He C, Yu Y, Yue L, Qiao N, Li J, Shen Q, Yu W, Chen J, Hao Z (2014) Appl Catal B 147:156–166CrossRefGoogle Scholar
  25. 25.
    Jia AP, Jiang SY, Lu JQ, Luo MF (2010) J Phys Chem C 114:21605–21610CrossRefGoogle Scholar
  26. 26.
    Hu C, Zhu Q, Chen L, Wu R (2009) Mater Res Bull 44:2174–2180CrossRefGoogle Scholar
  27. 27.
    Yen H, Seo Y, Kaliaguine S, Kleitz F (2012) Angew Chem Int Ed 51:12032–12035CrossRefGoogle Scholar
  28. 28.
    Yao S, Mudiyanselage K, Xu W, Johnston-Peck AC, Hanson JC, Wu T, Stacchiola DJ, Rodriguez JA, Zhao H, Beyer KA (2014) ACS Catal 4:1650–1661CrossRefGoogle Scholar
  29. 29.
    Du PP, Wang WW, Jia CJ, Song QS, Huang YY, Si R (2016) Appl Catal A 518:87–101CrossRefGoogle Scholar
  30. 30.
    Na K, Choi KM, Yaghi OM, Somorjai GA (2014) Nano Lett 14:5979–5983CrossRefGoogle Scholar
  31. 31.
    Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Pure Appl Chem 57:603–619CrossRefGoogle Scholar
  32. 32.
    Kramer R, Andre M (1979) J Catal 58:287–295CrossRefGoogle Scholar
  33. 33.
    Luo MF, Zhong YJ, Yuan XX, Zheng XM (1997) Appl Catal A 162:121–131CrossRefGoogle Scholar
  34. 34.
    Zheng Y, Mao D, Sun S, Fu G (2015) J Nanopart Res 17:471CrossRefGoogle Scholar
  35. 35.
    Zheng Y, Mao D, Sun S, Fu G (2016) J Mater Sci 51:917–925CrossRefGoogle Scholar
  36. 36.
    Francisco MSP, Mastelaro VR, Nascente PAP, Florentino AO (2001) J Phys Chem B 105:10515–10522CrossRefGoogle Scholar
  37. 37.
    Artiglia L, Orlando F, Roy K, Kopelent R, Safonova OV, Nachtegaal M, Huthwelker T, Van Bokhoven JA (2017) J Phys Chem Lett 8:102–108CrossRefGoogle Scholar
  38. 38.
    Zhan W, Zhang X, Guo Y, Wang L, Guo Y, Lu G (2014) J Rare Earths 32:146–152CrossRefGoogle Scholar
  39. 39.
    Avgouropoulos G, Ioannides T (2003) Appl Catal A 244:155–167CrossRefGoogle Scholar
  40. 40.
    Avgouropoulos G, Ioannides T (2006) Appl Catal B: Environ 67:1–11CrossRefGoogle Scholar
  41. 41.
    Cocco F, Elsener B, Fantauzzi M, Atzei D, Rossi A (2016) RSC Adv 6:31277–31289CrossRefGoogle Scholar
  42. 42.
    Sun S, Mao D, Yu J, Yang Z, Lu G, Ma Z (2015) Catal Sci Technol 5:3166–3181CrossRefGoogle Scholar
  43. 43.
    Meng D, Xu Q, Jiao Y, Guo Y, Guo Y, Wang L, Lu G, Zhan W (2018) Appl Catal B 221:652–663CrossRefGoogle Scholar
  44. 44.
    Hu Z, Qiu S, You Y, Guo Y, Guo Y, Wang L, Zhan W, Lu G (2018) Appl Catal B 225:110–120CrossRefGoogle Scholar
  45. 45.
    Hu Z, Wang Z, Guo Y, Wang L, Guo Y, Zhang J, Zhan W (2018) Environ Sci Technol 52:9531–9541CrossRefGoogle Scholar
  46. 46.
    Zeng S, Wang Y, Ding S, Sattler JJHB, Borodina E, Zhang L, Weckhuysen BM, Su H (2014) J Power Sources 256:301–311CrossRefGoogle Scholar
  47. 47.
    Gong X, Liu B, Kang B, Xu G, Wang Q, Jia C, Zhang J (2017) Mol Catal 436:90–99CrossRefGoogle Scholar
  48. 48.
    Shen W, Mao D, Luo Z, Yu J (2017) RSC Adv 7:27689–27698CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Research Institute of Applied Catalysis, School of Chemical and Environmental EngineeringShanghai Institute of TechnologyShanghaiChina

Personalised recommendations