Catalysis Letters

, Volume 149, Issue 3, pp 766–777 | Cite as

Preparation and Characterization of Core–Shell Composite Zeolite BEA@MFI and Their Catalytic Properties in ESR

  • Xing Li
  • Ziliang Zheng
  • Shiyao Wang
  • Chen Sun
  • Rong Dai
  • Xu Wu
  • Xia An
  • Xianmei XieEmail author


A group of BEA@MFI core–shell zeolite catalysts were successfully constructed with Cu-, Ni-modified Beta core and Co-based Silicalite-1 shell by combining seed induction secondary growth technique and incipient wetness impregnation method. The resulting micro-composite possess a well-defined core–shell structure with high surface area and abundant mesopore in the outer shell, and a relative large truncated bi-pyramidal shape core of Beta. It was further used to correlate their performance in ethanol steam reforming. The obtained xNiyCu-Beta@Co-Silicalite-1 catalysts exhibited excellent catalytic performance compared with the conventional zeolite catalysts. Particularly, the 2.5Ni2.5Cu-Beta@CoSilicalite-1 catalyst exhibited the highest selectivity of hydrogen, the lowest selectivity of by-products, the long-term stability and coking-resistance capability. This is mainly attributed to the excellent textural properties. And the Ni, Cu nanoparticles which incorporated into the core–shell micro-composites protected the properties of active phases effectively. Moreover, the “purification effect” of the Co-base shell is conducive to obtaining high-purity hydrogen through a multiple reaction system.

Graphical Abstract


BEA@MFI Polymetallic catalyst Ethanol steam reforming Hydrogen production 



We gratefully acknowledge the National Natural Science Foundation of China (No. 51541210) and Natural science fundation of Shanxi Province (No. 201701D121042) for our funding.

Compliance with Ethical Standards

Conflict of Interest

The authors declare no conflicts of interest.


  1. 1.
    Li SR, Gong JL (2014) Chem Soc Rev 43:7245CrossRefGoogle Scholar
  2. 2.
    Sharma YC, Kumar A, Prasad R, Upadhyay SN (2017) Renew Sust Energ Rev 74:89CrossRefGoogle Scholar
  3. 3.
    Llorca J, Homs N, Sales J, de la Piscina PR (2002) J Catal 209:306CrossRefGoogle Scholar
  4. 4.
    Zhang J, Zhong Z, Cao XM, Hu P, Sullivan MB (2014) ACS Catal 4:448CrossRefGoogle Scholar
  5. 5.
    Coronel L, Múnera JF, Tarditi AM, Moreno MS, Cornaglia LM (2014) Appl Catal B 160:254CrossRefGoogle Scholar
  6. 6.
    Rossetti I, Lasso J, Nichele V, Signoretto M, Finocchio E, Ramis G, Michele AD (2014) Appl Catal B 150:257CrossRefGoogle Scholar
  7. 7.
    Li D, Li XY, Gong JL (2016) Chem Rev 116:11529CrossRefGoogle Scholar
  8. 8.
    Zhang CX, Li SR, Li MS, Wang SP, Ma XB, Gong JL (2012) AIChE J 58:516CrossRefGoogle Scholar
  9. 9.
    Palma V, Castaldo P, Ciambelli P, Iaquaniello G (2014) Appl Catal B 145:73CrossRefGoogle Scholar
  10. 10.
    Mattos LV, Jacobs G, Davis BH, Noronha FB (2012) Chem Rev 112:4094CrossRefGoogle Scholar
  11. 11.
    Karim AM, Su Y, Engelhard MH, King DL, Wang Y (2011) ACS Catal 1:279CrossRefGoogle Scholar
  12. 12.
    Koh AC, Leong WK, Chen L, Ang TP, Lin J, Johnson BF, Khimyak T (2008) Catal Commun 9:170CrossRefGoogle Scholar
  13. 13.
    Bouizi Y, Diaz I, Rouleau L, Valtchev VP (2005) Adv Funct Mater 15:1955CrossRefGoogle Scholar
  14. 14.
    Pirngruber GD, Laroche C, Maricar-Pichon M, Rouleau L, Bouizi Y, Valtchev V (2013) Micropor Mesopor Mater 169:212CrossRefGoogle Scholar
  15. 15.
    Bouizi Y, Rouleau L, Valtchev VP (2006) Micropor Mesopor Mater 91:70CrossRefGoogle Scholar
  16. 16.
    Wang N, Sun QM, Bai RS, Li X, Guo GQ, Yu JH (2016) J Am Chem Soc 138:7484CrossRefGoogle Scholar
  17. 17.
    Chen LC, Lin SD (2014) Appl Catal B 148:509CrossRefGoogle Scholar
  18. 18.
    Andonova S, De Avila CN, Arishtirova K, Bueno JMC, Damyanova S (2011) Appl Catal B 105:346CrossRefGoogle Scholar
  19. 19.
    Chen LC, Lin SD (2011) Appl Catal B 106:639CrossRefGoogle Scholar
  20. 20.
    Lorenzut B, Montini T, De Rogatis L, Canton P, Benedetti A, Fornasiero P (2011) Appl Catal B 101:397CrossRefGoogle Scholar
  21. 21.
    De Rogatis L, Montini T, Lorenzut B, Fornasiero P (2008) Energy Environ Sci 1:501Google Scholar
  22. 22.
    Serrano DP, Van Grieken R, Sanchez P, Sanz P, Rodríguez L (2001) Micropor Mesopor Mater 46:35CrossRefGoogle Scholar
  23. 23.
    Persson AE, Schoeman BJ, Sterte J, Otterstedt JE (1994) Zeolites 14:557CrossRefGoogle Scholar
  24. 24.
    Wang D, Xu L, Wu P (2014) J Mater Chem A 2:15535CrossRefGoogle Scholar
  25. 25.
    Beckers J, Rothenberg G (2010) Green Chem 12:939CrossRefGoogle Scholar
  26. 26.
    Shan J, Janvelyan N, Li H, Liu JL, Egle TM, Ye JC, Biener MM, Biener J, Friend CM, Flytzani-Stephanopoulos M (2017) Appl Catal B 205:541CrossRefGoogle Scholar
  27. 27.
    Bouizi Y, Rouleau L, Valtchev VP (2006) Chem Mater 18:4959CrossRefGoogle Scholar
  28. 28.
    Groen JC, Abelló S, Villaescusa LA, Pérez-Ramírez J (2008) Micropor Mesopor Mater 114:93CrossRefGoogle Scholar
  29. 29.
    Belambe AR, Oukaci R, Goodwin JJG (1997) J Catal 166:8CrossRefGoogle Scholar
  30. 30.
    Prieto G, Martínez A, Concepción P, Moreno-Tost R (2009) J Catal 266:129CrossRefGoogle Scholar
  31. 31.
    Riva R, Miessner H, Vitali R, Del Piero G (2000) Appl Catal A 196:111CrossRefGoogle Scholar
  32. 32.
    Jongsomjit B, Panpranot J, Goodwin JG Jr (2001) J Catal 204:98CrossRefGoogle Scholar
  33. 33.
    Batista MS, Santos RKS, Assaf EM, Assaf JM, Ticianelli EA (2004) J Power Sour 134:27CrossRefGoogle Scholar
  34. 34.
    Pradhan AC, Uyar T (2017) ACS Appl Mater Interfaces 9:35757CrossRefGoogle Scholar
  35. 35.
    Zhang JJ, Liang YQ, Mao J, Yang XJ, Cui ZD, Zhu SL, Li ZY (2016) Sensor Actuat B 235:420CrossRefGoogle Scholar
  36. 36.
    Huang W, Zuo Z, Han P, Li Z, Zhao T (2009) J Electron Spectrosc 173:88CrossRefGoogle Scholar
  37. 37.
    Sun JM, Karim AM, Mei DH, Engelhard M, Bao XH, Wang Y (2015) Appl Catal B 162:141CrossRefGoogle Scholar
  38. 38.
    Li D, Zeng L, Li XY, Assabumrungrat S, Gong JL (2015) Appl Catal B 176:532CrossRefGoogle Scholar
  39. 39.
    Sanchez-Sanchez MC, Navarro RM, Espartero I, Ismail AA, Al-Sayari SA, Fierro JLG (2013) Top Catal 56:1672CrossRefGoogle Scholar
  40. 40.
    Calles JA, Carrero A, Vizcaíno AJ (2010) Proceedings of the WHEC 2010, p. 411Google Scholar
  41. 41.
    Profeti LPR, Ticianelli EA, Assaf EM (2009) Appl Catal A: Gen 360:17CrossRefGoogle Scholar
  42. 42.
    Sekine Y, Nakazawa Y, Oyama K, Shimizu T, Ogo S (2014) Appl Catal A 472:113CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Xing Li
    • 1
  • Ziliang Zheng
    • 2
  • Shiyao Wang
    • 1
  • Chen Sun
    • 1
  • Rong Dai
    • 1
  • Xu Wu
    • 1
  • Xia An
    • 1
  • Xianmei Xie
    • 1
    Email author
  1. 1.College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean UtilizationTaiyuan University of TechnologyTaiyuanChina
  2. 2.Translational Medicine Research CenterShanxi Medical UniversityTaiyuanChina

Personalised recommendations