Catalysis Letters

, Volume 149, Issue 2, pp 473–485 | Cite as

The Catalytic Activity Enhancement of Commercial TiO2 and Nb2O5 Catalysts by Iron for Elemental Sulfur Production from H2S

  • H. Mehmet TasdemirEmail author


Commercial TiO2 and Nb2O5 catalysts were used to determine catalytic activities for selective oxidation of H2S to elemental sulfur. Fe@TiO2 and Fe@Nb2O5 catalysts (containing 10% iron by weight) were also prepared by wet impregnation method to enhance the catalytic activity. TiO2 anatase phase and Nb2O5 were mainly observed in the crystalline structure of TiO2 and Nb2O5 based catalysts, respectively. Catalytic activity tests were performed in a fixed-bed flow reactor at 250 °C using stoichiometric feed ratio. 30% and 28% H2S conversions were obtained with commercial TiO2 and Nb2O5 catalysts. Complete conversion of H2S was reached with Fe@TiO2 and Fe@Nb2O5 catalysts at the same reaction conditions for 400 min. of reaction time. 100% of H2S conversion was obtained with iron-containing catalysts in the reaction tests carried out at 200 °C and 300 °C of reaction temperatures. Fe@TiO2 and Fe@Nb2O5 catalysts showed high sulfur selectivity (≥ 95%) under all reaction conditions. Iron addition enhanced the Lewis acidity and redox property of the commercial catalysts and this may be the reason for increase in catalytic activity.

Graphical Abstract


H2Elemental sulfur Commercial catalyst Iron 



The contributions of Professor Sena Yasyerli and Professor Nail Yasyerli of Gazi University are gratefully acknowledged.


  1. 1.
    Eslek DD, Yasyerli S (2009) Ind Eng Chem Res 48:5223–5229CrossRefGoogle Scholar
  2. 2.
    Li KT, Yen CS, Shyu NS (1997) App Catal A 156:117–130CrossRefGoogle Scholar
  3. 3.
    Jung SJ, Kim MH, Chung JK, Moon MJ, Chung JS, Park DW, Woo HC (2003) Stud Surf Sci Catal 146:621–624CrossRefGoogle Scholar
  4. 4.
    Tasdemir HM, Yasyerli S, Yasyerli N (2015) Int J Hydrogen Energy 40:9989–10001CrossRefGoogle Scholar
  5. 5.
    Zhang X, Dou G, Wang Z, Li L, Wang Y, Wang H, Hao Z (2013) J Hazard Mater 260:104–111CrossRefGoogle Scholar
  6. 6.
    Mikenin P, Zazhigalov S, Elyshev A, Lopatin S, Larina T, Cherepanova S, Pisarev D, Baranov D, Zagoruiko A (2016) Catal Commun 87:36–40CrossRefGoogle Scholar
  7. 7.
    Chun SW, Jang JY, Park DW, Woo HC, Chung JS (1998) Appl Catal B 16:235–243CrossRefGoogle Scholar
  8. 8.
    Bineesh KV, Kim DK, Cho HJ, Park DW (2010) J Ind Eng Chem 16:593–597CrossRefGoogle Scholar
  9. 9.
    Kim M, Ju WD, Kim KH, Hong SS (2006) Stud Surf Sci Catal 159:225–228CrossRefGoogle Scholar
  10. 10.
    Palma V, Barba D (2014) Int J Hydrogen Energy 39:21524–21530CrossRefGoogle Scholar
  11. 11.
    Palma V, Barba D (2014) Fuel 135:99–104CrossRefGoogle Scholar
  12. 12.
    Yasyerli S, Dogu G, Ar I, Dogu T (2004) Chem Eng Sci 59:4001–4009CrossRefGoogle Scholar
  13. 13.
    Yasyerli S, Dogu G, Dogu T (2006) Catal Today 117:271–278CrossRefGoogle Scholar
  14. 14.
    Bineesh KV, Kim MI, Park MS, Lee KY, Park DW (2011) Catal Today 175:183–188CrossRefGoogle Scholar
  15. 15.
    Bineesh KV, Kim MI, Lee GH, Selvaraj M, Park DW (2013) App Clay Sci 74:127–134CrossRefGoogle Scholar
  16. 16.
    Trueba M, Trasatti SP (2005) Eur J Inorg Chem 17:3393–3403CrossRefGoogle Scholar
  17. 17.
    Liu X, Truitt RE (1997) J Am Chem Soc 119:9856–9860CrossRefGoogle Scholar
  18. 18.
    Kim MI, Lee GH, Kim DW, Kang DH, Park DW (2014) Korean J Chem Eng 31:2162–2169CrossRefGoogle Scholar
  19. 19.
    Park DW, Kim BG, Kim MI, Kim I, Woo HC (2004) Catal Today 93–95:235–240CrossRefGoogle Scholar
  20. 20.
    Zhu H, Qin Z, Shan W, Shen W, Wang J (2004) J Catal 225:267–277CrossRefGoogle Scholar
  21. 21.
    Pereira CAS, Gonzales EAU (2014) Fuel 118:137–147CrossRefGoogle Scholar
  22. 22.
    Caceres CV, Fierro JL, Agudo AL, Soria J (1990) J Catal 122:113–125CrossRefGoogle Scholar
  23. 23.
    Shin MY, Park DW, Chung JS (2001) Appl Catal B 30:409–419CrossRefGoogle Scholar
  24. 24.
    Desponds O, Keiski RL, Somorjai GA (1993) Catal Lett 19:17–32CrossRefGoogle Scholar
  25. 25.
    Smits RHH, Seshan K, Ross JRH (1991) J Chem Soc Chem Commun 8:558–559CrossRefGoogle Scholar
  26. 26.
    Tanabe K (2003) Catal Today 78:65–77CrossRefGoogle Scholar
  27. 27.
    Lowell S, Shield J (1984) Powder Surface Area and Porosity. Chapman and Hall, New YorkCrossRefGoogle Scholar
  28. 28.
    Rouquerol J, Rouquerol F, Sing KSW (1998) Adsorption by powders and porous solids: principles, methodology and applications. Academic Press, San DiegoGoogle Scholar
  29. 29.
    Senevirathne K, Pitigala S, Ramaraj S, Lachgar A, Williams RT (2017) Am J Nanomater 5:43–50CrossRefGoogle Scholar
  30. 30.
    Arachchige IU, Brock SL (2006) ACC Chem Res 40:801–809CrossRefGoogle Scholar
  31. 31.
    Brundle CR, Evans CA (1992) Materials characterization series. In: Wachs IE (ed) Characterization of catalytic materials. Manning Publications Co., BostonGoogle Scholar
  32. 32.
    Sankova N, Semeykina V, Selishchev D, Glazneva T, Parkhomchuk E, Larichev Y, Uvarov N (2018) Catal Lett 148:2391–2407CrossRefGoogle Scholar
  33. 33.
    Viswanadham B, Pavankumar V, Chary KVR (2014) Catal Lett 144:744–755CrossRefGoogle Scholar
  34. 34.
    Raba AM, Ruiz JB, Joya MR (2016) Mater Res 19(6):1381–1387CrossRefGoogle Scholar
  35. 35.
    Arbag H (2018) Int J Hydrogen Energy 43:6561–6574CrossRefGoogle Scholar
  36. 36.
    Yasyerli S, Aktas O (2012) J Fac Eng Archit Gazi Univ 27:49–58Google Scholar
  37. 37.
    Parola VL, Deganello G, Scire S, Venezia AM (2003) J of Solid State Chem 174:482–488CrossRefGoogle Scholar
  38. 38.
    Buniazet Z, Lorentz C, Cabiac A, Maury S, Loridant S (2018) Mol Catal 451:143–152CrossRefGoogle Scholar
  39. 39.
    Perez-Lopez G, Ramirez-Lopez R, Viveros T (2018) Catal Today 305:182–191CrossRefGoogle Scholar
  40. 40.
    Stosic D, Bennici S, Rakic V, Auroux A (2012) Catal Today 192:160–168CrossRefGoogle Scholar
  41. 41.
    Castro DC, Cavalcante RP, Jorge J, Martines MAU, Oliveira LCS, Casagrande GA, Machulek A (2016) J Braz Chem Soc 27:303–313Google Scholar
  42. 42.
    Nguyen P, Edouard D, Nhut JM, Ledoux MJ, Pham C, Huu CP (2007) Appl Catal B 76:300–310CrossRefGoogle Scholar
  43. 43.
    Zhang X, Tang Y, Qu S, Da J, Hao Z (2015) ACS Catal 5:1053–1067CrossRefGoogle Scholar
  44. 44.
    Tasdemir HM, Yagizatli Y, Yasyerli S, Yasyerli N, Dogu G (2017) J Fac Eng Archit Gazi 32:831–841Google Scholar
  45. 45.
    Lo JMH, Ziegler T, Clark PD (2011) J Phys Chem 115:1899–1910CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical EngineeringGazi UniversityAnkaraTurkey

Personalised recommendations