Advertisement

Catalysis Letters

, Volume 149, Issue 3, pp 665–671 | Cite as

Ionic Liquids Catalyzed Friedel–Crafts Alkylation of Substituted Benzenes with CCl4 Toward Trichloromethylarenes

  • Xinyu Lyu
  • Wencheng Wang
  • Yiqun Sun
  • Qian Zhao
  • Tao QiuEmail author
Article
  • 60 Downloads

Abstract

An ionic liquid catalyzed Friedel–Crafts alkylation reaction of substituted benzenes with CCl4 was developed. The reaction proceeded efficiently under mild conditions, gave corresponding trichloromethylarenes with diversity functional groups in moderate to good yields. The influence of Lewis acidity of ionic liquids on the conversion of the alkylation reaction has been investigated. Notably, the probable mechanism of this reaction has been proposed with the assistance of 27Al NMR spectroscopy. It was noteworthy that the predominance of [Al2Cl7] species in EmimCl–AlCl3, N = 0.67 could be detected by 27Al NMR spectral analysis, and [AlCl4] was generated at the beginning of reaction. Additionally, it was found that [AlCl4] could be transformed into [Al2Cl7] when the reaction finished. Some control experiments confirmed that the interaction between Lewis acidic species [Al2Cl7] of the ionic liquid and CCl4 led to the change in speciation of aluminum during the alkylation reactions.

Graphical Abstract

Keywords

Trichloromethylarenes Friedel–Crafts alkylation Ionic liquids Catalysts Mechanism 

Notes

Acknowledgements

We are thankful for assistance from the staff at Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology (Changzhou University). This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Supplementary material

10562_2018_2633_MOESM1_ESM.docx (62 kb)
Supplementary material 1 (DOCX 62 KB)

References

  1. 1.
    Belen’kii LI, Brokhovetskii DB, Krayushkin MM (1991) Tetrahedron 47(3):447–456Google Scholar
  2. 2.
    Rondestvedt CS (1976) J Org Chem 41(22):3569–3574Google Scholar
  3. 3.
    Rosca SI, Stan R, Bratu C, Deleanu C (2010) Rev Chim 61(10):940–945Google Scholar
  4. 4.
    Zhao H, Holladay JE, Brown H, Zhang ZC (2007) Science 316(5831):1597–1600Google Scholar
  5. 5.
    Hu P, Wang Y, Meng X, Zhang R, Liu H, Xu C, Liu Z (2017) Fuel 189:203–209Google Scholar
  6. 6.
    Li C, Liu W, Zhao Z (2007) Catal Commun 8(11):1834–1837Google Scholar
  7. 7.
    Antunes MM, Lima S, Neves P, Magalhães AL, Fazio E, Fernandes A, Neri F, Silva CM, Rocha SM, Ribeiro MF, Pilinger M, Urakawa A, Valente AA (2015) J Catal 329(2):522–537Google Scholar
  8. 8.
    Liao Y, Huang X, Liao X, Shi S (2011) J Mol Catal A 347(1–2):46–51Google Scholar
  9. 9.
    Leng Y, Wang J, Zhu D, Wu Y, Zhao P (2009) J Mol Catal A 313(1–2):1–6Google Scholar
  10. 10.
    Catrinescu C, Fernandes C, Castilho P, Breen C (2015) Appl Catal A 489:171–179Google Scholar
  11. 11.
    Wang G, Yu N, Peng L, Tan R, Zhao H, Yin D, Qiu H, Fu Z, Yin D (2008) Catal Lett 123(3–4):252–258Google Scholar
  12. 12.
    Earle MJ, Seddon KR (2000) Pure Appl Chem 72(7):1391–1398Google Scholar
  13. 13.
    Shiflett MB, Yokozeki A (2016) J Chem Eng Data 54(1):108–114Google Scholar
  14. 14.
    Zhou D, Zhou R, Chen C, Yee WA, Kong J, Ding G, Lu X (2013) J Phys Chem B 117(25):7783–7789Google Scholar
  15. 15.
    Park S, Kazlauskas RJ (2003) Curr Opin Biotechnol 14(4):432–437Google Scholar
  16. 16.
    Howarth J, James P, Dai J (2000) Tetrahedron Lett 41(52):10319–10321Google Scholar
  17. 17.
    Xie X, Lu J, Chen B, Han J, She X, Pan X (2004) Tetrahedron Lett 45(4):809–811Google Scholar
  18. 18.
    Wasserscheid P, Keim W (2000) Angew Chem Int Ed 39(21):3772–3789Google Scholar
  19. 19.
    Shill K, Padmanabhan S, Xin Q, Prausnitz JM, Clark DS, Blanch HW (2011) Biotechnol Bioeng 108(3):511–520Google Scholar
  20. 20.
    Gutowski KE, Broker GA, Willauer HD, Huddleston JG, Swatloski RP, Holbrey JD, Rogers RD (2003) J Am Chem Soc 125(22):6032–6033Google Scholar
  21. 21.
    Abbott AP, Capper G, Davies DL, Munro HL, Rasheed RK, Tambyrajah V (2001) Chem Commun 19(19):2010–2011Google Scholar
  22. 22.
    Piao LY, Fu X, Yang YL, Tao GH, Kou Y (2004) Catal Today 93–95:301–305Google Scholar
  23. 23.
    Li WK, Zhou GD, Mak T (2008) Advanced structural inorganic chemistry. Oxford University Press, New YorkGoogle Scholar
  24. 24.
    Nara SJ, Harjani JR, Salunkhe MM (2001) J Org Chem 66(25):8616–8620Google Scholar
  25. 25.
    Olah GA (1963) Friedel-Crafts and related reactions. Interscience Publishers, New YorkGoogle Scholar
  26. 26.
    Abbott AP, Fulian Q, Abood HM, Ali MR, Ryder KS (2010) Phys Chem Chem Phys 12(8):1862–1872Google Scholar
  27. 27.
    Jiang T, Brym Chollier MJ, Dubé G, Lasia A, Brisard GM (2006) Surf Coat Technol 201(1):10–18Google Scholar
  28. 28.
    Furukawa J, Kobayashi E, Arai Y (1971) J Polym Sci B 9(11):805–812Google Scholar
  29. 29.
    Jensen FR, Brown HC (1958) J Am Chem Soc 80(15):4042–4045Google Scholar
  30. 30.
    Matsumoto T, Ichikawa K (1984) Chemischer Informationsdienst 15(44):4316–4320Google Scholar
  31. 31.
    Karpinski ZJ, Osteryoung RA (1984) Chemischer Informationsdienst 15(33):1491–1494Google Scholar
  32. 32.
    Hussey CL, Scheffler TB, Wilkes JS, Fanin AA Jr (1986) J Electrochem Soc 133(7):1389–1391Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Xinyu Lyu
    • 1
  • Wencheng Wang
    • 1
  • Yiqun Sun
    • 1
  • Qian Zhao
    • 1
  • Tao Qiu
    • 1
    Email author
  1. 1.Jiangsu Key Laboratory of Advanced Catalytic Materials and TechnologyChangzhou UniversityChangzhouChina

Personalised recommendations