Catalysis Letters

, Volume 149, Issue 3, pp 813–822 | Cite as

Matching Relationship Between Carbon Material and Pd Precursor

  • Xiang Zhang
  • Yan DuEmail author
  • Hong Jiang
  • Yefei Liu
  • Rizhi ChenEmail author


The matching relationship between carbon material and Pd precursor was investigated by constructing Pd@C catalysts with four carbon materials (mesoporous carbon, activated carbon, N-doped carbon and O-doped carbon) and three Pd precursors (PdCl2, Pd(C2H3O2)2 and Pd(NO3)2) and evaluating their catalytic performance in the phenol hydrogenation to cyclohexanone. The Pd precursor or the carbon material has no obvious influence on the cyclohexanone selectivity, but strongly affects the catalytic activity. The Pd@C prepared via PdCl2 shows good performance among all tested catalysts due to higher Pd content and better Pd dispersion. Conversely, although Pd(NO3)2 is easily adsorbed by carbon carriers, the catalytic activity is poor due to the worse Pd dispersion. The Pd(C2H3O2)2 adsorption is very sensitive to the surface properties of carbon, and the N-doping can enhance the binding force between carbon and Pd2+, leading to higher Pd content and better Pd dispersion, thereby enhanced catalytic activity. This work would provide valuable references for the selection of Pd precursor for a given support.

Graphical Abstract


Carbon Pd precursor Matching relationship Phenol hydrogenation Cyclohexanone 



The financial supports from the National Key R&D Program (Grant No. 2016YFB0301503), the National Natural Science Foundation (Grant Nos. 21776127, 91534210) and the Jiangsu Province Natural Science Foundation for Distinguished Young Scholars (Grant No. BK20150044) of China are gratefully acknowledged.

Compliance with Ethical Standards

Conflict of interest

All authors declare no conflicts of interest.

Supplementary material

10562_2018_2630_MOESM1_ESM.docx (181 kb)
Supplementary material 1 (DOCX 180 KB)


  1. 1.
    Huang XQ, Feng BM, Niu YL, Zhao L, Hu WH (2018) Fenton-reaction-derived Fe/N-doped graphene with encapsulated Fe3C nanoparticles for efficient photo–fenton catalysis. Catal Lett 148:2528–2536CrossRefGoogle Scholar
  2. 2.
    Liu AM, Hidajat K, Kawi S (2001) Combining the advantages of homogeneous and heterogeneous catalysis: rhodium complex on functionalized MCM-41 for the hydrogenation of arenes. J Mol Catal A 168:303–306CrossRefGoogle Scholar
  3. 3.
    He X, Bai SY, Sun JH, Zhang YJ, Zhao HW, Wu X (2018) Bipyridine–proline grafted silicas with different mesopore structures: their catalytic performance in asymmetric aldol reaction and structure effect. Catal Lett 148:2408–2417CrossRefGoogle Scholar
  4. 4.
    De Smet K, Aerts S, Ceulemans E, Vankelecom IFJ, Jacobs PA (2001) Nanofiltration-coupled catalysis to combine the advantages of homogeneous and heterogeneous catalysis. Chem Commun 7:597–598CrossRefGoogle Scholar
  5. 5.
    Feng G, Chen P, Lou H (2015) Palladium catalysts supported on carbon-nitrogen composites for aqueous-phase hydrogenation of phenol. Catal Sci Technol 5:2300–2304CrossRefGoogle Scholar
  6. 6.
    Shao Y, Xu ZY, Wan HQ, Wan YQ, Chen H, Zheng SR, Zhu DQ (2011) Enhanced liquid phase catalytic hydrodechlorination of 2,4-dichlorophenol over mesoporous carbon supported Pd catalysts. Catal Commun 12:1405–1409CrossRefGoogle Scholar
  7. 7.
    Hu S, Zhang X, Qu ZY, Jiang H, Liu YF, Huang J, Xing WH, Chen RZ (2017) Insights into deactivation mechanism of Pd@CN catalyst in the liquid-phase hydrogenation of phenol to cyclohexanone. J Ind Eng Chem 53:333–340CrossRefGoogle Scholar
  8. 8.
    Li ZL, Liu JH, Xia CG, Li FW (2013) Nitrogen-functionalized ordered mesoporous carbons as multifunctional supports of ultrasmall Pd nanoparticles for hydrogenation of phenol. ACS Catal 3:2440–2448CrossRefGoogle Scholar
  9. 9.
    Nie RF, Miao M, Du WC, Shi JJ, Liu YC, Hou ZY (2016) Selective hydrogenation of C=C bond over N-doped reduced grapheme oxides supported Pd catalyst. Appl Catal B 180:607–613CrossRefGoogle Scholar
  10. 10.
    Dong ZP, Dong CX, Liu YS, Le XD, Jin ZC, Ma JT (2015) Hydrodechlorination and further hydrogenation of 4-chlorophenol to cyclohexanone in water over Pd nanoparticles modified N-doped mesoporous carbon microspheres. Chem Eng J 270:215–222CrossRefGoogle Scholar
  11. 11.
    Jiang HZ, Yu XL, Nie RF, Lu XH, Zhou D, Xia QH (2016) Selective hydrogenation of aromatic carboxylic acids over basic N-doped mesoporous carbon supported palladium catalysts. Appl Catal A 520:73–81CrossRefGoogle Scholar
  12. 12.
    Yang SB, Zhi LJ, Tang K, Feng XL, Maier J, Müllen K (2012) Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions. Adv Funct Mater 22:3634–3640CrossRefGoogle Scholar
  13. 13.
    Wang XQ, Lee JS, Zhu Q, Liu J, Wang Y, Dai S (2010) Ammonia-treated ordered mesoporous carbons as catalytic materials for oxygen reduction reaction. Chem Mater 22:2178–2180CrossRefGoogle Scholar
  14. 14.
    Xiang YZ, Kong LN, Xie PY, Xu TY, Wang JG, Li XN (2014) Carbon nanotubes and activated carbons supported catalysts for phenol in situ hydrogenation: hydrophobic/hydrophilic effect. Ind Eng Chem Res 53:2197–2203CrossRefGoogle Scholar
  15. 15.
    Wang JG, Lv YA, Li XN, Dong MD (2009) Point-defect mediated bonding of Pt clusters on (5,5) carbon nanotubes. J Phys Chem C 113:890–893CrossRefGoogle Scholar
  16. 16.
    Xu TF, Zhang QF, Cen J, Xiang YZ, Li XN (2015) Selectivity tailoring of Pd/CNTs in phenol hydrogenation by surface modification: role of C–O oxygen species. Appl Surf Sci 324:634–639CrossRefGoogle Scholar
  17. 17.
    Du JP, Song C, Zhao JH, Zhu ZP (2008) Effect of chemical treatment to hollow carbon nanoparticles (HCNP) on catalytic behaviors of the platinum catalysts. Appl Surf Sci 255:2989–2993CrossRefGoogle Scholar
  18. 18.
    Xu TY, Zhang QF, Yang HF, Li XN, Wang JG (2013) Role of phenolic groups in the stabilization of palladium nanoparticles. Ind Eng Chem Res 52:9783–9789CrossRefGoogle Scholar
  19. 19.
    Wang Y, Yao J, Li HR, Su DS, Antonietti M (2011) Highly selective hydrogenation of phenol and derivatives over a Pd@carbon nitride catalyst in aqueous media. J Am Chem Soc 133:2362–2365CrossRefGoogle Scholar
  20. 20.
    Haque E, Jun JW, Talapaneni SN, Vinu A, Jhung SH (2010) Superior adsorption capacity of mesoporous carbon nitride with basic CN framework for phenol. J Mater Chem 20:10801–10803CrossRefGoogle Scholar
  21. 21.
    Liu HZ, Jiang T, Han BX, Liang SG, Zhou YX (2009) Selective phenol hydrogenation to cyclohexanone over a dual supported Pd–Lewis acid catalyst. Science 326:1250–1252CrossRefGoogle Scholar
  22. 22.
    Ding SS, Zhang CH, Liu YF, Jiang H, Xing WH, Chen RZ (2017) Pd nanoparticles supported on N-doped porous carbons derive from ZIF-67: enhanced catalytic performance in phenol hydrogenation. J Ind Eng Chem 46:258–265CrossRefGoogle Scholar
  23. 23.
    Gopinath R, Babu NS, Kumar JV, Lingaiah N, Prasad PSS (2008) Influence of Pd precursor and method of preparation on hydrodechlorination activity of alumina supported palladium catalysts. Catal Lett 120:312–319CrossRefGoogle Scholar
  24. 24.
    Ali SH, Goodwin JW (1998) SSITKA investigation of palladium precursor and support effects on CO hydrogenation over supported Pd catalysts. J Catal 176:3–13CrossRefGoogle Scholar
  25. 25.
    Shen WJ, Ichihashi Y, Ando H, Okumura M, Haruta M, Matsumura Y (2001) Influence of palladium precursors on methanol synthesis from CO hydrogenation over Pd/CeO2 catalysts prepared by deposition–precipitation method. Appl Catal A 217:165–172CrossRefGoogle Scholar
  26. 26.
    Borkowski T, Trzeciak AM, Bukowski W, Bukowska A, Tylus W, Kepinski L (2010) Palladium(0) nanoparticles formed in situ in the Suzuki–Miyaura reaction: The effect of a palladium(II) precursor. Appl Catal A 378:83–89CrossRefGoogle Scholar
  27. 27.
    Wang CB, Huang TH (2002) Influence of palladium precursors on oxidation of alumina-supported palladium. Chermochim Acta 381:37–44CrossRefGoogle Scholar
  28. 28.
    Mahata N, Vishwanathan V (2000) Influence of palladium precursors on structural properties and phenol hydrogenation characteristics of supported palladium catalysts. J Catal 196:262–270CrossRefGoogle Scholar
  29. 29.
    Bhosale MA, Sasaki T, Bhanage BM (2016) Role of palladium precursors in morphology selective synthesis of palladium nanostructures. Powder Technol 291:154–158CrossRefGoogle Scholar
  30. 30.
    Hu ZL, Aizawa M, Wang ZM, Hatori H (2009) Palladium precursor for highly-efficient preparation of carbon nanosheet-palladium nanoparticle composites. Carbon 47:3365–3380CrossRefGoogle Scholar
  31. 31.
    Bachiller-Baeza B, Pena-Bahamonde J, Castillejos-Lopez E, Guerrero-Ruiz A, Rodriguez-Ramos I (2015) Improved performance of carbon nanofiber-supported palladium particles in the selective 1,3-butadiene hydrogenation: influence of carbon nanostructure, support functionalization treatment and metal precursor. Catal Today 249:63–81CrossRefGoogle Scholar
  32. 32.
    Colussi S, Gayen A, Boaro M, Llorca J, Trovarelli A (2015) Influence of different palladium precursors on the properties of solution-combustion-synthesized palladium/ceria catalysts for methane combustion. ChemCatChem 7:2222–2229CrossRefGoogle Scholar
  33. 33.
    Kinnunen NM, Suvanto M, Moreno MA, Savimaki A, Kallinen K, Kinnunen TJJ, Pakkanen TA (2009) Methane oxidation on alumina supported palladium catalysts: effect of Pd precursor and solvent. Appl Catal A 370:78–87CrossRefGoogle Scholar
  34. 34.
    Morel A, Trzeciak AM, Pernak J (2014) Palladium catalyzed heck arylation of 2,3-dihydrofuran: effect of the palladium precursor. Molecules 19:8402–8413CrossRefGoogle Scholar
  35. 35.
    Hu S, Yang GX, Jiang H, Liu YF, Chen RZ (2018) Selective hydrogenation of phenol to cyclohexanone over Pd@CN (N-doped porous carbon): role of catalyst reduction method. Appl Surf Sci 435:649–655CrossRefGoogle Scholar
  36. 36.
    Lyalina NN, Dargina SV, Sobolev AN, Buslaeva TM, Romm IP (1993) Structure and properties of palladium(II) diacetate and its complexes. Koordinats Khim 19:57–63Google Scholar
  37. 37.
    Mulagaleev RF, Kirik SD (2010) Computational study of the mechanism of cyclometalation by palladium acetate. Russ J Appl Chem 83:2065–2075CrossRefGoogle Scholar
  38. 38.
    Stoyanov ES (2000) IR study of the structure of palladium(II) acetate in chloroform, acetic acid, and the IR mixtures in solution and in liquid-solid subsurface layers. J Struct Chem 41:440–445CrossRefGoogle Scholar
  39. 39.
    Kirik SD, Mulagaleev RF (2004) [Pd(CH3COO)(2)](n) from x-ray powder diffraction data. Acta Crystallogr Sect C 60:449–450CrossRefGoogle Scholar
  40. 40.
    Zhou H, Han BB, Liu TZ, Zhong X, Zhuang GL, Wang JG (2017) Selective phenol hydrogenation to cyclohexanone over alkali–metal-promoted Pd/TiO2 in aqueous media. Green Chem 19:3585–3594CrossRefGoogle Scholar
  41. 41.
    Jiang H, Qu ZY, Li Y, Huang J, Chen RZ, Xing WH (2016) One-step semi-continuous cyclohexanone production via hydrogenation of phenol in a submerged ceramic membrane reactor. Chem Eng J 284:724–732CrossRefGoogle Scholar
  42. 42.
    Long X, Zhao ZM, Wu L, Luo S, Wen H, Wu W, Zhang HB, Ma JT (2017) Distinctive ligand effects of functionalized magnetic microparticles immobilizing palladium acetate as heterogeneous coordination catalysts for selective oxidation of styrene to acetophenone. Mol Catal 433:291–300CrossRefGoogle Scholar
  43. 43.
    Baltrusaitis J, Jayaweera PM, Grassian VH (2009) XPS study of nitrogen dioxide adsorption on metal oxide particle surfaces under different environmental conditions. Phys Chem Chem Phys 11:8295–8305CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Materials-Oriented Chemical EngineeringNanjing Tech UniversityNanjingPeople’s Republic of China
  2. 2.College of EnvironmentNanjing Tech UniversityNanjingPeople’s Republic of China

Personalised recommendations