Catalysis Letters

, Volume 149, Issue 2, pp 441–448 | Cite as

A Newly Designed Core-Shell-Like Zeolite Capsule Catalyst for Synthesis of Light Olefins from Syngas via Fischer–Tropsch Synthesis Reaction

  • Zuoxing Di
  • Tiejian Zhao
  • Xuleng Feng
  • Mingsheng LuoEmail author


Improving the selectivity of light olefins remains a longstanding challenge in Fischer–Tropsch to light olefins reaction (FTO). Toward this objective, we designed and prepared a newly catalyst with core-shell-like structure by using a simple and facile method named physically adhesive method. This core-shell-like catalyst Fe@SAPO-34 was characterized by XRD, SEM, EDS, N2 sorption and NH3-TPD respectively. The characterization results indicated that the SAPO-34 zeolite shell was comparatively uniform, homogeneous and defect-free, and it encapsulated the Fe catalyst entirely. Fischer–Tropsch synthesis reaction of syngas to light olefins was selected to test the catalytic performance of the zeolite capsule catalyst. In comparison with the simple mixture catalyst Fe/SAPO-34 and bare Fe catalyst, the newly Fe@SAPO-34 catalyst has demonstrated ability of the highest selectivity of light olefins 52.6% and O/P ratio 6.4. The SAPO-34 zeolite shell acted an important role for the improvement of light olefins selectivity.

Graphical Abstract


Core-shell-like SAPO-34 Fe catalyst Physically adhesive method FTO reaction 


  1. 1.
    Galvis HMT, Jong KPD (2013) Catalysts for production of lower olefins from synthesis gas: a review. ACS Catal 3(9):2130–2149Google Scholar
  2. 2.
    Snel R (1987) Olefins from syngas. Catal Rev Sci Eng 29(4):361–445Google Scholar
  3. 3.
    Krieger K (2014) Renewable energy: Biofuels heat up. Nature 508(7497):448–449Google Scholar
  4. 4.
    Tian P, Wei Y, Liu Z et al (2015) Methanol to olefins (MTO): from fundamentals to commercialization. ACS Catalysis 5(3):1922–1938Google Scholar
  5. 5.
    Hereijgers BPC, Bleken F, Olsbye U et al (2009) Product shape selectivity dominates the methanol-to-olefins (MTO) reaction over H-SAPO-34 catalysts. J Catal 264(1):77–87Google Scholar
  6. 6.
    Sun J, Wang Y (2014) Recent advances in catalytic conversion of ethanol to chemicals. ACS Catal 4(4):1078–1090Google Scholar
  7. 7.
    Zhang X, Wang R, Yang X et al (2008) Comparison of four catalysts in the catalytic dehydration of ethanol to ethylene. Microporous Mesoporous Mater 116(1–3):210–215Google Scholar
  8. 8.
    Liu Z, Sun C, Wang G et al (2000) New progress in R&D of lower olefin synthesis. Fuel Process Technol 62(2):161–172Google Scholar
  9. 9.
    Cheng K, Zhang Q, Wang Y et al (2016) Direct and highly selective conversion of synthesis gas into lower olefins: design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling. Angew Chem Int Ed Engl 55(15):4725–4728Google Scholar
  10. 10.
    Schwab E, Weck A, Bay K et al (2010) Syngas to lower olefins. Oil Gas Eur Mag 1:44–47Google Scholar
  11. 11.
    Chen X, Deng D, Bao X et al (2015) N-doped graphene as an electron donor of iron catalysts for CO hydrogenation to light olefins. Chem Commun 51(1):217–220Google Scholar
  12. 12.
    Galvis HMT, Bitter JH, Jong KPD et al (2012) Iron particle size effects for direct production of lower olefins from synthesis gas. J Am Chem Soc 134:16207–16215Google Scholar
  13. 13.
    Subramanian V, Cheng K, Wang Y (2017) Fundamentally understanding Fischer-Tropsch synthesis. Reference module in chemistry, molecular sciences and chemical engineering. Elsevier, AmsterdamGoogle Scholar
  14. 14.
    Cheng K, Kang J, Wang Y et al (2017) Advances in catalysis for syngas conversion to hydrocarbons. Adv Catal 60:125–208Google Scholar
  15. 15.
    Jothimurugesan K Jr, Gangwal JGG (2000) S K, et al. Development of Fe Fischer-Tropsch catalysts for slurry bubble column reactors. Catal Today 58(4):335–344Google Scholar
  16. 16.
    Zhang Q, Kang J, Wang Y (2010) Development of novel catalysts for Fischer-Tropsch synthesis: tuning the product selectivity. ChemCatChem 2(9):1030–1058Google Scholar
  17. 17.
    Sun B, Yu G, Zong B et al (2012) A highly selective Raney Fe@HZSM-5 Fischer–Tropsch synthesis catalyst for gasoline production: one-pot synthesis and unexpected effect of zeolites. Catal Sci Technol 2:1625–1629Google Scholar
  18. 18.
    Bao J, He J, Tsubaki N et al (2008) A core/shell catalyst produces a spatially confined effect and shape selectivity in a consecutive reaction. Angew Chem Int Ed Engl 47(2):353Google Scholar
  19. 19.
    Yang G, Wang D, Tsubaki N et al (2012) Facile synthesis of H-type zeolite shell on a silica substrate for tandem catalysis. Chem Commun 48(9):1263–1265Google Scholar
  20. 20.
    Qiu T, Wang L, Li J et al (2017) SAPO-34 zeolite encapsulated Fe3C nanoparticles as highly selective Fischer-Tropsch catalysts for the production of light olefins. Fuel 203:811–816Google Scholar
  21. 21.
    Xing C, Sun J, Tsubaki N et al (2015) Tunable isoparaffin and olefin yields in Fischer-Tropsch synthesis achieved by a novel iron-based micro-capsule catalyst. Catal Today 251(165):41–46Google Scholar
  22. 22.
    Yang G, Xing C, Tsubaki N et al (2013) Tandem catalytic synthesis of light isoparaffin from syngas via Fischer-Tropsch synthesis by newly developed core-shell-like zeolite capsule catalysts. Catal Today 215(2):29–35Google Scholar
  23. 23.
    Lefevere J, Mullens S, Meynen V et al (2014) Structured catalysts for methanol-to-olefins conversion: a review. Chem Pap 68(9):1143–1153Google Scholar
  24. 24.
    Pinkaew K, Yang G, Tsubaki N et al (2013) A new core-shell-like capsule catalyst with SAPO-46 zeolite shell encapsulated Cr/ZnO for the controlled tandem synthesis of dimethyl ether from syngas. Fuel 111(3):727–732Google Scholar
  25. 25.
    Phienluphon R, Pinkaew K, Tsubaki N et al (2015) Designing core (Cu/ZnO/Al2O3)-shell (SAPO-11) zeolite capsule catalyst with a facile physical way for dimethyl ether direct synthesis from syngas. Chem Eng J 270:605–611Google Scholar
  26. 26.
    Cui Y, Wang Y, Wei F (2015) Effect of Si/Al ratio of SAPO-34 on reactivity and coke composition in methanol to olefins reaction. J Chem Ind Eng (China) 66(8):2982–2989Google Scholar
  27. 27.
    Li J, Ma H, Zhang H et al (2014) Comparison of FeMn, FeMnNa and FeMnK catalysts for the preparation of light olefins from syngas. Acta Phys Chim Sin 30(10):1932–1940Google Scholar
  28. 28.
    BRENT, MEI-TAK LOK, CELESTE ANNE MESSINA, LANIGEN EDITH MARIE. Crystalline silicoaluminophosphates, et al. US, EP0103117-B1 [P].1986-09-17Google Scholar
  29. 29.
    Jiao F, Li J, Bao X et al (2016) Selective conversion of syngas to light olefins. Science 351:1065–1068Google Scholar
  30. 30.
    Galvis HMT, Bitter JH, Jong KPD et al (2012) Supported iron nanoparticles as catalysts for sustainable production of lower olefins. Science 335:835–838Google Scholar
  31. 31.
    Li J, Pan X, Bao X (2015) Direct conversion of syngas into hydrocarbons over a core-shell Cr-Zn@SiO2@SAPO-34 catalyst. Chin J Catal 36(7):1131–1135Google Scholar
  32. 32.
    Qin H, Zhou Y, Li X et al (2017) Lignin-Derived thin-walled graphitic carbon-encapsulated iron nanoparticles: growth, characterization, and applications. ACS Sustain Chem Eng 5(2):1917–1923Google Scholar
  33. 33.
    Qin H, Wang B, Zhou Q et al (2017) Lignin based synthesis of graphitic carbon-encapsulated iron nanoparticles as effective catalyst for forming lower Olefins via Fischer-Tropsch synthesis. Catal Com 96:28–31Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Zuoxing Di
    • 1
  • Tiejian Zhao
    • 1
  • Xuleng Feng
    • 1
  • Mingsheng Luo
    • 1
    Email author
  1. 1.Center for Applied Energy and Environmental ResearchBeijing Institute of Petrochemical TechnologyBeijingChina

Personalised recommendations