Advertisement

Screening of Solvents, Hydrogen Source, and Investigation of Reaction Mechanism for the Hydrocyclisation of Levulinic Acid to γ-Valerolactone Using Ni/SiO2–Al2O3 Catalyst

  • Sreedhar Gundekari
  • Kannan Srinivasan
Article
  • 41 Downloads

Abstract

Commercial 65% Ni/SiO2–Al2O3 (Ni/SA) catalyst was investigated for hydrocyclisation of levulinic acid (LA) to γ-valerolactone (Gvl) in presence of different hydrogen sources such as molecular hydrogen, isopropyl alcohol (IPA), and formic acid. At optimized reaction condition (200 °C, 10 bar H2 for 30 min), the Ni/SA catalyst showed 100% yield of Gvl using molecular H2 in tetrahydrofuran (THF) medium. The catalyst also exhibited 99% yield of Gvl in IPA through catalytic transfer hydrocyclisation of LA at 200 °C in 15 min. Further, the hydrocyclisation was successfully demonstrated in continuous mode using molecular hydrogen for 20 h time-on-stream which showed 98–99% conversion of LA with 100% selectivity of Gvl at optimized reaction condition in THF medium.

Graphical Abstract

Keywords

Levulinic acid γ-Valerolactone Hydrocyclisation Transfer hydrocyclisation Nickel Reusability Reaction mechanism Continuous production 

Notes

Acknowledgements

CSIR-CSMCRI Communication No. 133/2018. S.G. thanks CSIR, New Delhi, for a Senior Research Fellowship. The authors thank CSIR, New Delhi for financial support under the projects OLP-0031, CSC-0123, and MLP-0028. The authors thank Analytical Division & Centralized Instrumental Facilities of this institute for analytical support.

Compliance with Ethical Standards

Conflict of interest

There are no conflicts of interest to declare.

Supplementary material

10562_2018_2618_MOESM1_ESM.docx (893 kb)
Supplementary material 1 (DOCX 892 KB)

References

  1. 1.
    Bozell JJ, Petersen GR (2010) Green Chem 12:539–554CrossRefGoogle Scholar
  2. 2.
    Mariscal R, Maireles-Torres P, Ojeda M, Sadaba I, Lopez GM (2016) Energy Environ Sci 9:1144–1189CrossRefGoogle Scholar
  3. 3.
    Nakagawa Y, Tamura M, Tomishige K (2013) ACS Catal 3:2655–2668CrossRefGoogle Scholar
  4. 4.
    Primo A, Concepcion P, Corma A (2011) Chem Commun 47:3613–3615CrossRefGoogle Scholar
  5. 5.
    Sánchez MA, Torres GC, Mazzieri VA, Pieck CL (2017) J Chem Technol Biotechnol 92:27–42CrossRefGoogle Scholar
  6. 6.
    Yadav M, Mishra DK, Hwang J-S (2012) Appl Catal A 425–426:110–116CrossRefGoogle Scholar
  7. 7.
    Ghorpade V, Hanna M (1997) Industrial applications for levulinic acid. In: Campbell GM, Webb C, McKee SL (eds) Cereals: novel uses and processes. Springer, Boston, pp 49–55CrossRefGoogle Scholar
  8. 8.
    Yan K, Jarvis C, Gu J, Yan Y (2015) Renew Sustain Energy Rev 51:986–997CrossRefGoogle Scholar
  9. 9.
    Rackemann DW, Doherty WOS (2011) Biofuels Bioprod Biorefin 5:198–214CrossRefGoogle Scholar
  10. 10.
    Upare PP, Lee J-M, Hwang YK, Hwang DW, Lee J-H, Halligudi SB, Hwang J-S, Chang J-S (2011) ChemSusChem 4:1749–1752CrossRefGoogle Scholar
  11. 11.
    Mizugaki T, Nagatsu Y, Togo K, Maeno Z, Mitsudome T, Jitsukawa K, Kaneda K (2015) Green Chem 17:5136–5139CrossRefGoogle Scholar
  12. 12.
    Wright WRH, Palkovits R (2012) ChemSusChem 5:1657–1667CrossRefGoogle Scholar
  13. 13.
    Alonso DM, Wettstein SG, Dumesic JA (2013) Green Chem 15:584–595CrossRefGoogle Scholar
  14. 14.
    Horváth IT, Mehdi H, Fábos V, Boda L, Mika LT (2008) Green Chem 10:238–242CrossRefGoogle Scholar
  15. 15.
    Alonso DM, Wettstein SG, Mellmer MA, Gurbuz EI, Dumesic JA (2013) Energy Environ Sci 6:76–80CrossRefGoogle Scholar
  16. 16.
    Horváth IT (2008) Green Chem 10:1024–1028CrossRefGoogle Scholar
  17. 17.
    Duan Z-Q, Hu F (2012) Green Chem 14:1581–1583CrossRefGoogle Scholar
  18. 18.
    Stradi A, Molnar M, Ovari M, Dibo G, Richter FU, Mika LT (2013) Green Chem 15:1857–1862CrossRefGoogle Scholar
  19. 19.
    Strappaveccia G, Ismalaj E, Petrucci C, Lanari D, Marrocchi A, Drees M, Facchetti A, Vaccaro L (2015) Green Chem 17:365–372CrossRefGoogle Scholar
  20. 20.
    Strappaveccia G, Luciani L, Bartollini E, Marrocchi A, Pizzo F, Vaccaro L (2015) Green Chem 17:1071–1076CrossRefGoogle Scholar
  21. 21.
    Pongrácz P, Bartal B, Kollár L, Mika LT (2017) J Organomet Chem 847:140–145CrossRefGoogle Scholar
  22. 22.
    Fegyverneki D, Orha L, Láng G, Horváth IT (2010) Tetrahedron 66:1078–1081CrossRefGoogle Scholar
  23. 23.
    Osatiashtiani A, Lee AF, Wilson K (2017) J Chem Technol Biotechnol 92:1125–1135CrossRefGoogle Scholar
  24. 24.
    Liguori F, Moreno-Marrodan C, Barbaro P (2015) ACS Catal 5:1882–1894CrossRefGoogle Scholar
  25. 25.
    Tang X, Zeng X, Li Z, Hu L, Sun Y, Liu S, Lei T, Lin L (2014) Renew Sustain Energy Rev 40:608–620CrossRefGoogle Scholar
  26. 26.
    Zhang J, Chen J, Guo Y, Chen L (2015) ACS Sustain Chem Eng 3:1708–1714CrossRefGoogle Scholar
  27. 27.
    Pinto BP, Fortuna ALL, Cardoso CP, Mota CJA (2017) Catal Lett 147:751–757CrossRefGoogle Scholar
  28. 28.
    Gupta SSR, Kantam ML (2018) Catal Today 309:189–194CrossRefGoogle Scholar
  29. 29.
    Hengst K, Schubert M, Carvalho HWP, Lu C, Kleist W, Grunwaldt J-D (2015) Appl Catal A 502:18–26CrossRefGoogle Scholar
  30. 30.
    Fu J, Sheng D, Lu X (2016) Catalysts 6:6CrossRefGoogle Scholar
  31. 31.
    Shimizu K-i, Kanno S, Kon K (2014) Green Chem 16:3899–3903CrossRefGoogle Scholar
  32. 32.
    Rodiansono, Astuti MD, Hara T, Ichikuni N, Shimazu S (2016) Catal Sci Technol 6:2955–2961CrossRefGoogle Scholar
  33. 33.
    Rong Z, Sun Z, Wang L, Lv J, Wang Y, Wang Y (2014) Catal Lett 144:1766–1771CrossRefGoogle Scholar
  34. 34.
    Kumar VV, Naresh G, Sudhakar M, Tardio J, Bhargava SK, Venugopal A (2015) Appl Catal A 505:217–223CrossRefGoogle Scholar
  35. 35.
    Kumar VV, Naresh G, Sudhakar M, Anjaneyulu C, Bhargava SK, Tardio J, Reddy VK, Padmasri AH, Venugopal A (2016) RSC Adv 6:9872–9879CrossRefGoogle Scholar
  36. 36.
    Varkolu M, Velpula V, Ganji S, Burri DR, Kamaraju SRR (2015) RSC Adv 5:57201–57210CrossRefGoogle Scholar
  37. 37.
    Mohan V, Raghavendra C, Pramod CV, Raju BD, Rama Rao KS (2014) RSC Adv 4:9660–9668CrossRefGoogle Scholar
  38. 38.
    Mohan V, Venkateshwarlu V, Pramod CV, Raju BD, Rao KSR (2014) Catal Sci Technol 4:1253–1259CrossRefGoogle Scholar
  39. 39.
    Wang L, Han YX, Gao SS, Luo Y, Liu L (2018) React Kinet Mech Catal 124:389–399CrossRefGoogle Scholar
  40. 40.
    Jones DR, Iqbal S, Thomas L, Ishikawa S, Reece C, Miedziak PJ, Morgan DJ, Bartley JK, Willock DJ, Ueda W, Hutchings GJ (2018) Catal Struct React 4:12–23CrossRefGoogle Scholar
  41. 41.
    Hengne AM, Kadu BS, Biradar NS, Chikate RC, Rode CV (2016) RSC Adv 6:59753–59761CrossRefGoogle Scholar
  42. 42.
    Lv J, Rong Z, Wang Y, Xiu J, Wang Y, Qu J (2015) RSC Adv 5:72037–72045CrossRefGoogle Scholar
  43. 43.
    Geboers J, Wang X, de Carvalho AB, Rinaldi R (2014) J Mol Catal A 388–389:106–115CrossRefGoogle Scholar
  44. 44.
    Yang Z, Huang YB, Guo QX, Fu Y (2013) Chem Commun 49:5328–5330CrossRefGoogle Scholar
  45. 45.
    Obregon I, Gandarias I, Miletic N, Ocio A, Arias PL (2015) ChemSusChem 8:3483–3488CrossRefGoogle Scholar
  46. 46.
    Obregon I, Gandarias I, Al-Shaal MG, Mevissen C, Arias PL, Palkovits R (2016) ChemSusChem 9:2488–2495CrossRefGoogle Scholar
  47. 47.
    Varkolu M, Velpula V, Burri DR, Kamaraju SRR (2016) New J Chem 40:3261–3267CrossRefGoogle Scholar
  48. 48.
    Varkolu M, Burri DR, Kamaraju SRR, Jonnalagadda SB, van Zyl WE (2017) Chem Eng Technol 40:719–726CrossRefGoogle Scholar
  49. 49.
    Hengne AM, Malawadkar AV, Biradar NS, Rode CV (2014) RSC Adv 4:9730–9736CrossRefGoogle Scholar
  50. 50.
    Upare PP, Jeong M-G, Hwang YK, Kim DH, Kim YD, Hwang DW, Lee UH, Chang J-S (2015) Appl Catal A 491:127–135CrossRefGoogle Scholar
  51. 51.
    Schutyser W, Van den Bossche G, Raaffels A, Van den Bosch S, Koelewijn S-F, Renders T, Sels BF (2016) ACS Sustain Chem Eng 4:5336–5346CrossRefGoogle Scholar
  52. 52.
    Shimizu K-i, Kon K, Shimura K, Hakim SSMA (2013) J Catal 300:242–250CrossRefGoogle Scholar
  53. 53.
    Mears DE, Boudart M (1966) AlChE J 12:313–321CrossRefGoogle Scholar
  54. 54.
    Galletti AMR, Antonetti C, De Luise V, Martinelli M (2012) Green Chem 14:688–694CrossRefGoogle Scholar
  55. 55.
    Boréave A, Auroux A, Guimon C (1997) Microporous Mater 11:275–291CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Inorganic Materials and Catalysis Division, CSIR-Central Salt and Marine Chemicals Research InstituteCouncil of Scientific and Industrial Research (CSIR)BhavnagarIndia
  2. 2.Academy of Scientific and Innovative ResearchCSIR-Central Salt and Marine Chemicals Research InstituteBhavnagarIndia

Personalised recommendations