Advertisement

Copper Nanoparticles Immobilized on Nanocellulose: A Novel and Efficient Heterogeneous Catalyst for Controlled and Selective Oxidation of Sulfides and Alcohols

  • Apurba Dutta
  • Mitali Chetia
  • Abdul A. Ali
  • Ankur Bordoloi
  • Praveen S. Gehlot
  • Arvind Kumar
  • Diganta Sarma
Article
  • 18 Downloads

Abstract

In this work, we have described the versatility of low metal loading copper nanoparticles immobilized on nanocellulose for the controlled and selective oxidation of sulfides to sulfoxides and primary alcohols to aldehydes using green oxidant at room temperature. Aromatic, aliphatic and heterocyclic sulfides were oxidized to their corresponding sulfoxides with high yields without formation of over oxidized sulfones. Similarly, benzylic, allylic and aliphatic alcohols were selectively oxidized to aldehydes without traces of carboxylic acids in good to excellent yields.

Graphical Abstract

Keywords

Oxidation Nanoparticles Heterogeneous Low metal loading Recyclability 

Notes

Acknowledgements

The authors acknowledge the Department of Science and Technology for financial assistance under DST-FIST program and UGC, New Delhi for Special Assistance Programme (UGC-SAP) to the Department of Chemistry, Dibrugarh University.

Supplementary material

10562_2018_2615_MOESM1_ESM.docx (1.5 mb)
Supplementary material 1 (DOCX 1521 KB)

References

  1. 1.
    Tojo G, Fernández M (2006) Oxidation of alcohols to aldehydes and ketones, 1st edn. Springer, New YorkGoogle Scholar
  2. 2.
    Centi G, Cavani F, Trifiro F (2001) Selective oxidation by heterogeneous catalysis, 1st edn. Kluwer Academic Publishers, New YorkCrossRefGoogle Scholar
  3. 3.
    Shi F, Tse MK, Kaiser HM, Beller M (2007) Adv Synth Catal 349:2425–2430CrossRefGoogle Scholar
  4. 4.
    Zhao P, Zhang M, Wu Y, Wang J (2012) Ind Eng Chem Res 51:6641–6647CrossRefGoogle Scholar
  5. 5.
    Liu X, Xia Q, Zhang Y, Chen C, Chen W (2013) J Org Chem 78:8531–8536CrossRefGoogle Scholar
  6. 6.
    Wang L, Shang S, Li G, Ren L, Lv Y, Gao S (2016) J Org Chem 81:2189–2193CrossRefGoogle Scholar
  7. 7.
    Veisi H, Hemmati S, Qomi M (2017) Tetrahedron Lett 58:4191–4196CrossRefGoogle Scholar
  8. 8.
    Kon Y, Yokoi T, Yoshioka M, Uesaka Y, Kujira H, Sato K, Tatsumi T (2013) Tetrahedron Lett 54:4918–4921CrossRefGoogle Scholar
  9. 9.
    Kinen CO, Rossi LI, Rossi RH (2009) J Org Chem 74:7132–7139CrossRefGoogle Scholar
  10. 10.
    Trivedi R, Lalitha P (2006) Synth Commun 36:3777–3782CrossRefGoogle Scholar
  11. 11.
    Bahrami K (2006) Tetrahedron Lett 47:2009–2012CrossRefGoogle Scholar
  12. 12.
    Velusamy S, Kumar AV, Saini R, Punniyamurthy T (2005) Tetrahedron Lett 46:3819–3822CrossRefGoogle Scholar
  13. 13.
    Jayaseeli AMI, Ramdass A, Rajagopal S (2015) Polyhedron 100:59–66CrossRefGoogle Scholar
  14. 14.
    Rezaeifard A, Haddad R, Jafarpour J, Hakimi M (2014) ACS Sustain Chem Eng 2:942–950CrossRefGoogle Scholar
  15. 15.
    Wu XF (2012) Tetrahedron Lett 53:4328–4331CrossRefGoogle Scholar
  16. 16.
    Sato K, Hyodo M, Aoki M, Zheng XQ, Noyori R (2001) Tetrahedron 57:2469–2476CrossRefGoogle Scholar
  17. 17.
    Islam SM, Roy AS, Mondal P, Salam N, Paul S (2013) Catal Lett 143:225–233CrossRefGoogle Scholar
  18. 18.
    Wang Q, Du W, Liu T, Chai H, Yu Z (2014) Tetrahedron Lett 55:1585–1588CrossRefGoogle Scholar
  19. 19.
    Panwar V, Kumar P, Ray SS, Jain SL (2015) Tetrahedron Lett 56:3948–3953CrossRefGoogle Scholar
  20. 20.
    Norman ROC, Coxon JM (1993) Principles of organic synthesis, 3rd edn. Blackie Academic & Proffesional, LondonCrossRefGoogle Scholar
  21. 21.
    Skibida IP, Sakharow AM (1996) Catal Today 27:187–193CrossRefGoogle Scholar
  22. 22.
    Noyori R, Aoki M, Sato K (2003) Chem Commun 36:1977–1986CrossRefGoogle Scholar
  23. 23.
    Jiang J, Du J, Wang Z, Zhang Z, Xu X, Zheng G, Ji Y (2014) Tetrahedron Lett 55:1677–1681CrossRefGoogle Scholar
  24. 24.
    Dhakshinamoorthy A, Alvaro M, Garcia H (2011) ACS Catal 1:48–53CrossRefGoogle Scholar
  25. 25.
    Ansari IA, Gree R (2002) Org Lett 4:1507–1509CrossRefGoogle Scholar
  26. 26.
    Albadi J, Alihoseinzadeh A, Mansournezhad A (2015) Synth Commun 45:877–885CrossRefGoogle Scholar
  27. 27.
    Pande S, Saha A, Jana S, Sarkar S, Basu M, Pradhan M, Sinha AK, Saha S, Pal A, Pal T (2008) Org Lett 10:5179–5181CrossRefGoogle Scholar
  28. 28.
    Hoover JM, Ryland BL, Stahl SS (2013) J Am Chem Soc 135:2357–2367CrossRefGoogle Scholar
  29. 29.
    Badalyan A, Stah SS (2016) Nature 535:406–410CrossRefGoogle Scholar
  30. 30.
    Xie J, Yin K, Serov A, Artyushkova K, Pham HN, Sang X, Unocic RR, Atanassov P, Datye AK, Davis RJ (2016) ChemSusChem 10:359–362CrossRefGoogle Scholar
  31. 31.
    Chetia M, Ali AA, Bordoloi A, Sarma D (2017) J Chem Sci 129:1211–1217CrossRefGoogle Scholar
  32. 32.
    Kaushik M, Moores A (2016) Green Chem 18:622–637CrossRefGoogle Scholar
  33. 33.
    Goswami M, Das AM (2018) Carbohydr Polym 195:189–198CrossRefGoogle Scholar
  34. 34.
    Eivazihollagh A, Bäckström J, Dahlström C, Carlsson F, Ibrahem I, Lindman B, Edlund H, Norgren M (2017) Mater Lett 187:170–172CrossRefGoogle Scholar
  35. 35.
    Musa A, Ahmad MB, Hussein MZ, Izham SM, Shameli K, Sani HA (2016) J Nanomater 11:438Google Scholar
  36. 36.
    Eivazihollagh A, Norgren M, Dahlström C, Edlund H (2018) Nanomaterials 8:238CrossRefGoogle Scholar
  37. 37.
    Lahiji RR, Xu X, Reifenberger R, Raman A, Rudie A, Moon RJ (2010) Langmuir 26:4480–4488CrossRefGoogle Scholar
  38. 38.
    Mora’n JI, Alvarez VA, Cyras VP, Va’zquez A (2015) Cellulose 15:149–159CrossRefGoogle Scholar
  39. 39.
    Hu Y, Tang L, Lu Q, Wang S, Chen X, Huang B (2014) Cellulose 21:1611–1618CrossRefGoogle Scholar
  40. 40.
    Kumar M, Bhatt V, Nayal OS, Sharma S, Kumar V, Thakur MS, Kumar N, Bal R, Singh B, Sharma U, Catal Sci Technol (2017)  https://doi.org/10.1039/C7CY00832E CrossRefGoogle Scholar
  41. 41.
    Dubale AA, Pan CJ, Tamirat AG, Chen HM, Su WN, Chen CH, Rick J, Ayele DW, Aragaw BA, Lee JF, Yang YW, Hwang BJJ (2015) Mater Chem A 3:11249–12482CrossRefGoogle Scholar
  42. 42.
    Pauly N, Tougaard S, Yubero F (2014) Surf Sci 620:17–22CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Apurba Dutta
    • 1
  • Mitali Chetia
    • 1
  • Abdul A. Ali
    • 1
  • Ankur Bordoloi
    • 2
  • Praveen S. Gehlot
    • 3
  • Arvind Kumar
    • 3
  • Diganta Sarma
    • 1
  1. 1.Department of ChemistryDibrugarh UniversityDibrugarhIndia
  2. 2.Nano Catalysis, Catalytic Conversion and Process DivisionCSIR -Indian Institute of PetroleumDehradunIndia
  3. 3.Academy of Scientific and Innovative Research (AcSIR)-Central Salt and Marine Chemicals Research Institute Council of Scientific and Industrial Research (CSIR) G. B. MargBhavnagarIndia

Personalised recommendations