Advertisement

Catalysis Letters

, Volume 149, Issue 1, pp 61–68 | Cite as

Titania Nanotube Derived Titanium Nitride Nano-cluster for Visible Light Driven Water Splitting

  • Xiaoyang Wang
  • Liangpeng Wu
  • Juan Li
  • Guanghua Wang
  • Jianbo Wen
  • Xinjun LiEmail author
  • Xu YangEmail author
Article
  • 35 Downloads

Abstract

Herein, titanium nitride (TN) nano cluster was synthesized through NH3 nitrification of titania nanotubes. The effect of nitrification temperature on the formation of TN was investigated by characterizations of X-ray diffractometer, Transmission electron microscopy, Diffuse reflectance UV–vis spectra, X-ray photoelectron spectroscopy, etc. The TN-900, nitrificated at 900 °C, demonstrated high hydrogen (H2) yield in visible light-induced water splitting owing to a narrow energy band gap, unique nano-cluster structure, reasonable surface area and excellent electrical conductivity, which promoted light harvesting, reactant adsorption, and photo-electron–hole separation.

Graphical Abstract

Titanium nitride (TN) nano-clusters were synthesized through NH3 nitrification of titania nanotubes. The TN-900, nitrificated at 900 °C, exhibited high H2 yield and good recycle usability in visible light-induced water splitting owing to a narrow energy band gap, unique nano-cluster structure, reasonable surface area and excellent electrical conductivity, which promoted light harvesting, reactant adsorption, and photo-electron–hole separation.

Keywords

Titanium nitride Nitrification Water splitting H2 production 

Notes

Acknowledgements

This work was supported by Natural Science Foundation of Guangdong Province (No. 2015A030313715, 2018A030310134), National Science Foundation of China (No. 21303210) and Science & Technology Plan Project of Guangzhou City (No. 201803030019).

References

  1. 1.
    Cobo S, Heidkamp J, Jacques PA, Fize J, Fourmond V, Guetaz L, Jousselme B, Ivanova V (2012) Nat Mater 11:802CrossRefGoogle Scholar
  2. 2.
    Sengodan S, Lan R, Humphreys J, Du D, Xu W, Wang H, Tao S (2018) Renew Sust Energ Rev 82:761CrossRefGoogle Scholar
  3. 3.
    Amin AM, Croiset E, Epling W (2011) Int J Hydrog Energy 36:2904CrossRefGoogle Scholar
  4. 4.
    Zhou Y, Yi QY, Xing MY, Shang L, Zhang TR, Zhang JL (2016) Chem Commun 52:1689CrossRefGoogle Scholar
  5. 5.
    Hameed A, Gondal MA, Yamani ZH (2004) Catal Commun 5:715CrossRefGoogle Scholar
  6. 6.
    Liu Z, Xu J, Li Y, Yu H (2018) Catal Lett 148:3205CrossRefGoogle Scholar
  7. 7.
    Yang X, Wu LP, Du L, Li XJ (2015) Catal Lett 145:1771CrossRefGoogle Scholar
  8. 8.
    Wen JQ, Xie J, Chen XB, Li X (2017) Appl Surf Sci 391:72CrossRefGoogle Scholar
  9. 9.
    Rahman MZ, Kwong CW, Davey K, Qiao SZ (2016) Energy Environ Sci 9:709CrossRefGoogle Scholar
  10. 10.
    Xiang Q, Yu J, Jaroniec M (2012) J Am Chem Soc 134:6575CrossRefGoogle Scholar
  11. 11.
    Villa K, Domènech X, García-Pérez UM, Peral J (2016) Catal Lett 146:100CrossRefGoogle Scholar
  12. 12.
    Fujishima A, Honda K (1972) Nature 238:37CrossRefGoogle Scholar
  13. 13.
    Teng F, Zhang G, Wang Y, Gao C, Zhang Z, Xie E (2015) J Mater Sci 50:2921CrossRefGoogle Scholar
  14. 14.
    Liu E, Fan J, Hu X, Hu Y, Li H, Tang C, Sun L, Wan J (2015) J Mater Sci 50:2298CrossRefGoogle Scholar
  15. 15.
    Yang X, Liang H, Wu LP, Zhang J, Huang Y, Li XJ (2017) Mater Res Bull 93:162CrossRefGoogle Scholar
  16. 16.
    Burda C, Lou Y, Chen X, Samia ACS, Stout J, Gole JL (2003) Nano Lett 3:1049CrossRefGoogle Scholar
  17. 17.
    Buchholcz B, Plank K, Mohai M, Kukovecz Á, Kiss J, Bertóti I, Kónya Z (2018) Top Catal 61:1263CrossRefGoogle Scholar
  18. 18.
    Kukovecz Á, Kordás K, Kiss J, Kónya Z (2016) Surf Sci Rep 71:473CrossRefGoogle Scholar
  19. 19.
    Chiarello GL, Selli E, Forni L (2008) Appl Catal B 84:332CrossRefGoogle Scholar
  20. 20.
    Yang X, Liang HG, Wu LP, Zhang JF, Huang YQ, Li XJ (2017) Mater Res Bull 93:162CrossRefGoogle Scholar
  21. 21.
    Li G, Zhang P, Bian Z, Zhu J, Wu L, Li H (2013) Chemsuschem 6:1461CrossRefGoogle Scholar
  22. 22.
    Yang T, Li Q, Chang X, Chou KC, Hou X (2015) Phys Chem Chem Phys 17:28782CrossRefGoogle Scholar
  23. 23.
    Urcan G, Sergey S, Alexandra B (2015) Nanophotonics 4:269Google Scholar
  24. 24.
    Chen JJ, Wu JCS, Wu PC, Tsai DP (2011) J Phys Chem C 115:210CrossRefGoogle Scholar
  25. 25.
    Li CT, Li SR, Chang LY, Lee CP, Chen PY, Sun SS, Lin JJ, Vittal R (2015) J Mater Chem A 3:4695CrossRefGoogle Scholar
  26. 26.
    Bertóti I (2012) Catal Today 181:95CrossRefGoogle Scholar
  27. 27.
    López R, Gómez R (2012) J Sol-Gel Sci Technol 61:1CrossRefGoogle Scholar
  28. 28.
    Angelo J, Andrade L, Mendes A (2014) Appl Catal A 484:17CrossRefGoogle Scholar
  29. 29.
    Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Science 293:269CrossRefGoogle Scholar
  30. 30.
    Wang XY, Yang X, Miao L, Gao J, Wu LP, Wang N, Li XJ (2018) Int J Hydrog Energy 43:10950CrossRefGoogle Scholar
  31. 31.
    Falodun OE, Obadele BA, Oke SR, Maja ME, Olubambi PA (2018) J Alloys Compd 736:202CrossRefGoogle Scholar
  32. 32.
    Garbrecht M, Hultman L, Fawey MH, Sands TD, Saha B (2018) J Mater Sci 53:4001CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Renewable Energy, Guangzhou Institute of Energy ConversionChinese Academy of SciencesGuangzhouPeople’s Republic of China
  2. 2.School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhouPeople’s Republic of China
  3. 3.School of Chemical Engineering and ChemistrySouth China University of TechnologyGuangzhouPeople’s Republic of China
  4. 4.Beijin Daking Eastern Technology Company LimitedBeijingPeople’s Republic of China
  5. 5.University of Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations