Advertisement

Catalysis Letters

, Volume 149, Issue 1, pp 338–346 | Cite as

Methanation at Very Low COx/H2 Ratio: Effect of Ce on Ni–Ce–Al Catalyst Properties and Empirical Kinetics

  • Kamila Michalska
  • Paweł KowalikEmail author
  • Wiesław Próchniak
  • Tadeusz Borowiecki
Article
  • 53 Downloads

Abstract

The effect of CeO2 on catalytic properties of Ni–Al COx methanation catalyst obtained by co-precipitation and thermal processing of hydroxycarbonate precursors was discussed. A series of model Ni–Ce–Al catalysts with variable content of cerium oxide were synthetized and the effect of modifier on physicochemical properties and on methanation rate was studied with regard to the temperature and the concentration of carbon oxides. Values of activation energy and turn-over frequencies and exponents in empirical kinetic power rate equations were determined. The analysis of exponents values provided information about probable changes of carbon oxides sorption. A higher activity of Ni–Al–Ce catalysts in methanation reaction was found as compared to reference Ni–Al catalyst. Ce modified Ni–Al catalysts also showed higher TOF values which proves the formation of more active centers.

Graphical Abstract

Keywords

Methanation Ni–Al catalyst modification CeO2 effect Empirical kinetics 

Notes

Acknowledgements

The authors are grateful to dr K. Stołecki for useful discussions dr hab. M. Konkol for dXRD measurements.

Supplementary material

10562_2018_2607_MOESM1_ESM.docx (209 kb)
Supplementary material 1 (DOCX 209 KB)

References

  1. 1.
    Twigg MV, (eds), Catalyst handbook. Wolfe Publishing Ltd, Prescott (1989) 352Google Scholar
  2. 2.
    Mills GA, Steffgen FW (1973) Catal Rev 8:159–210CrossRefGoogle Scholar
  3. 3.
    Andersson MP, Abild Pedersen F, Remediakis IN, Bligard T, Engbeak J, Lytken O, Horch S, Nielsen JH, Sehested J, Rostrup JR, Nielsen JK, Nørskov J, Chorkendorff (2008) J Catal 255:6–19CrossRefGoogle Scholar
  4. 4.
    Araki M, Ponec V (1976) J Catal 44:439–448CrossRefGoogle Scholar
  5. 5.
    Wentrcek PR, Wood BJ, Wise H (1976) J Catal 43:363–366CrossRefGoogle Scholar
  6. 6.
    Goodman DW, Kelley RD, Madey TE, White JM (1980) J Catal 64:479–481CrossRefGoogle Scholar
  7. 7.
    Klose J, Baerns M (1984) J Catal 85:105–116CrossRefGoogle Scholar
  8. 8.
    Alstrup I (1995) J Catal 151:216–255CrossRefGoogle Scholar
  9. 9.
    Agnelli M, Swan HM, Marquez Alvarez C, Martin GA, Mirotados C (1998) J Catal 175:117–128CrossRefGoogle Scholar
  10. 10.
    Wearterbee GD, Bartholomew CH (1982) J Catal 77:460–472CrossRefGoogle Scholar
  11. 11.
    Peebles DE, Goodman DW, White JM (1983) J Phys Chem 87:4378–4387CrossRefGoogle Scholar
  12. 12.
    Fujita S, Terunuma H, Kobayashi H, Takezawa N (1987) React Kinet Catal Lett 33:179–184CrossRefGoogle Scholar
  13. 13.
    Shild C, Wokaun A, Baiker A (1990) J Mol Catal 63:243–254CrossRefGoogle Scholar
  14. 14.
    Ackermann M, Robach O, Walker C, Quiros C, Isern H, Ferrer S (2004) Surf Sci 557:21–30CrossRefGoogle Scholar
  15. 15.
    Chloe SJ, Kang HJ, Kim SJ, Park SB, Park DH, Huh DS (2005) Bull Kor Chem Soc 26:1682–1688CrossRefGoogle Scholar
  16. 16.
    Osaki T, Mori T (2006) React Kinet Catal Lett 87:149–156CrossRefGoogle Scholar
  17. 17.
    Lapidus L, Gaidai NA, Nekrasov NV, Tishenko LA, Afganov YA, Mushenkova TN (2007) Petrol Chem 47:75–82CrossRefGoogle Scholar
  18. 18.
    van Herwijnen T, van Doesburg H, de Jong WA (1973) J Catal 28:391–402CrossRefGoogle Scholar
  19. 19.
    Vlasenko VM, Rusov MT, Yuzefovich GE (1960) Kinet Catal 2:476Google Scholar
  20. 20.
    Sehested J, Dahl S, Jacobsen J, Rostrup Nielsen JR (2005) J Phys Chem B 109:2432–2438CrossRefGoogle Scholar
  21. 21.
    Shoubye P (1969) J Catal 14:238–246CrossRefGoogle Scholar
  22. 22.
    Hwang S, Lee J, Hong UG, Seo JG, Jung JC, Koh DJ, Lim H, Byun C, Song IK (2011) J Ind Eng Chem 17:154–157CrossRefGoogle Scholar
  23. 23.
    Grabovska M, Edreva Kradjieva R, Crişan D, Tzvetkov P, Shopska M, Shtereva I (2012) React Kin Mech Catal 105:79–99CrossRefGoogle Scholar
  24. 24.
    Alihosseinzadeh A, Nematollahi B, Rezaei M, Lay EN (2015) Int J Hydrogen Energ 40:1809–1819CrossRefGoogle Scholar
  25. 25.
    Wierzbicki D, Baran R, Dębek R, Motak M, Grzybek T, Gálvez ME, Costa PD (2017) Int J Hydrogen Energ 42:23548–23555CrossRefGoogle Scholar
  26. 26.
    Zhang H, Dong Y, Fang W, Lian X (2013) Chin J Catal 34:330–335CrossRefGoogle Scholar
  27. 27.
    Guo C, Wu Y, Qin H, Zhang J (2014) Fuel Proc Technol 124 61–69CrossRefGoogle Scholar
  28. 28.
    Tada S, Shimizu T, Kameyama H, Haneda T, Kikuchi R (2012) Int J Hydrogen Energ 37:5527–5531CrossRefGoogle Scholar
  29. 29.
    Aziz MAA, Jalik AA, Triwahyono S, Mutki RR, Taufiq YH, Yap MR, Sazegar (2014) Appl Catal B 147:359–368CrossRefGoogle Scholar
  30. 30.
    Le TA, Kim MS, Lee SH, Kim TW, Park ED (2017) Catal Today 293–294:89–96CrossRefGoogle Scholar
  31. 31.
    Cai M, Wen J, Chu W, Cheng X, Li Z (2011) J Nat Gas Chem 20:318–324CrossRefGoogle Scholar
  32. 32.
    He L, Lion Q, Huang Y (2014) J Energ Chem 23:587–592CrossRefGoogle Scholar
  33. 33.
    Song F, Zhong Q, Yu Y, Shi M, Wu Y, Hu J, Song Y (2017) Int J Hydrogen Energ 42:4174–4183CrossRefGoogle Scholar
  34. 34.
    van Ho S, Harriot P (1980) J Catal 64:272–283CrossRefGoogle Scholar
  35. 35.
    Kai T, Takahashi T, Furusaki S (1988) Can J Chem Eng 66:343–347CrossRefGoogle Scholar
  36. 36.
    Koschany F, Schelereth D, Hinrichsen O (2016) Appl Catal B 181:504–516CrossRefGoogle Scholar
  37. 37.
    Rönsch S, Schneider J, Matthischke S, Schlüter M, Götz M, Lofebvre J, Prabhakaran P, Bajohr S (2016) Fuel 166:276–296CrossRefGoogle Scholar
  38. 38.
    Kowalczyk Z, Stołecki K, Raróg-Pilecka W, Miśkiewicz E, Wilczkowska E, Karpiński Z (2008) Appl Catal A Gen 342:35–39CrossRefGoogle Scholar
  39. 39.
    Kimura M, Miyao T, Komori S, Chen A, Higashiyama K, Yamashita H, Watanabe M (2010) Appl Catal A Gen 379:182–187CrossRefGoogle Scholar
  40. 40.
    Tovarelli C, Deleitenburg G, Dolcetti JL, Lorca (1995) J Catal 151:111–124CrossRefGoogle Scholar
  41. 41.
    Liang H, Zhang Y, Liu Y (2009) J Rare Earth 27:425–430CrossRefGoogle Scholar
  42. 42.
    Zhang J, Bai Y, Zhang Q, Wang X, Zhang T, Tan Y, Han Y (2014) Fuel 132:211–218CrossRefGoogle Scholar
  43. 43.
    Laosipirijana N, Assabumrungrat S (2006) Appl Catal B Environ 66:29–39CrossRefGoogle Scholar
  44. 44.
    Prakash AS, Shivakamara C, Hedge MS (2007) Mater Sci Eng B 139:55–61CrossRefGoogle Scholar
  45. 45.
    Znak L, Stołecki K, Zieliński J (2005) Catal Today 101:65–71CrossRefGoogle Scholar
  46. 46.
    Dębek R, Radlik M, Motak M, Galvez ME, Turek W, Da Costa P, Grzybek T (2015) Catal Today 257:59–65CrossRefGoogle Scholar
  47. 47.
    Ahmad W, Younis MN, Shawabkeh R, Ahmed S (2017) Catal Commun 100:121–126CrossRefGoogle Scholar
  48. 48.
    Ding M, Tu J, Zhang Q, Wang M, Tsubaki N, Wang T, Ma L (2016) Biomass Bioenerg 85:12–17CrossRefGoogle Scholar
  49. 49.
    Aldana PU, Ocampo F, Kobl K, Louis B, Thibault- Starzyk F, Daturi M, Bazin P, Thomas S, Roger AC (2013) Catal Today 215:201–207CrossRefGoogle Scholar
  50. 50.
    Pan Q, Peng J, Sun T, Wang S, Wang S (2014) Catal Commun 45:74–78CrossRefGoogle Scholar
  51. 51.
    Lansink Rotgerink HGJ, Slaa JC, van Ommen JG, Ross JRH (1988) Appl Catal 45:281–290CrossRefGoogle Scholar
  52. 52.
    Liu H, Zou X, Wang X, Lu X, Ding W (2012) J Nat Gas Chem 21:703–707CrossRefGoogle Scholar
  53. 53.
    Rahmani S, Reazei M, Meshkani F (2014) J Ind Eng Chem 20:4176CrossRefGoogle Scholar
  54. 54.
    Zhou L, Wang Q, Ma L, Chen J, Ma J, Zi Z (2015) Catal Lett 145:612–619CrossRefGoogle Scholar
  55. 55.
    Meng F, Li Z, Liu J, Cui X, Zheng H (2015) J Nat Gas Sci Eng 23:250–258CrossRefGoogle Scholar
  56. 56.
    Rombi E, Cutrufello MC, Aztori L, Monaci R, Ardu A, Gazzoli D, Deiana P, Ferino I (2016) Appl Catal A: gen 515:144–153CrossRefGoogle Scholar
  57. 57.
    Fukuhara C, Hakayawa K, Suzuki Y, Kawasaki W, Watanabe R (2017) Appl Catal A 532:12–18CrossRefGoogle Scholar
  58. 58.
    Ashok J, Ang ML, Kawi S (2017) Catal Today 281:304–311CrossRefGoogle Scholar
  59. 59.
    Michalska K, Kowalik P, Próchniak W, Borowiecki T (2018) Catal Lett 148:972–978CrossRefGoogle Scholar
  60. 60.
    Zieliński J (1981) React Kinet Catal Lett 17:69CrossRefGoogle Scholar
  61. 61.
    Zou X, Wang X, Li L, Shen K, Lu X, Ding W (2010) Int J Hydrogen Energ 35:12191–11200CrossRefGoogle Scholar
  62. 62.
    Daza CE, Gallego J, Mondragón F, Moreno S, Molina R (2010) Fuel 89:592–603CrossRefGoogle Scholar
  63. 63.
    Lu Y, Li S, Guo L (2013) Fuel 103:193–199CrossRefGoogle Scholar
  64. 64.
    Weatherbe GD, Bartholomew CH (1982) J Catal 77:460–472CrossRefGoogle Scholar
  65. 65.
    Maatman R, Hiemstra S (1980) J Catal 62:349–356CrossRefGoogle Scholar
  66. 66.
    Dalmon JA, Martin GA (1983) J Catal 84:45–54CrossRefGoogle Scholar
  67. 67.
    Polizzotti RS, Schwartz JA (1982) J Catal 77:1–15CrossRefGoogle Scholar
  68. 68.
    Agnelli M, Kolb M, Mirotados C (1994) J Catal 148:9–21CrossRefGoogle Scholar
  69. 69.
    Bartholomew CH (2001) Appl Catal A: Gen 212:17–60CrossRefGoogle Scholar
  70. 70.
    Xavier KO, Sreekala R, Rashid KKA, Yusuff KKM, Sen B (1999) Catal Today 49:17–21CrossRefGoogle Scholar
  71. 71.
    Zheng Y, Ma H, Zhang H, Ying W, Fang D (2015) Fuel 162:16–22CrossRefGoogle Scholar
  72. 72.
    Nematollahi B, Rezaei M, Lay EN (2015) Int J Hydrogen Energ 40:8539–8547CrossRefGoogle Scholar
  73. 73.
    Razzaq R, Zhu H, Jiang L, Muhammad U, Li Ch (2013) S. Zhang Ind Eng Chem Res 52:2247–2256CrossRefGoogle Scholar
  74. 74.
    Zhou G, Liu H, Cui K, Jia A, Hu G, Jiao Z, Liu Y, Zhang X, Appl. Surf. Sci. 383Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Kamila Michalska
    • 1
  • Paweł Kowalik
    • 1
    Email author
  • Wiesław Próchniak
    • 1
  • Tadeusz Borowiecki
    • 2
  1. 1.Catalyst DepartmentNew Chemical Syntheses InstitutePuławyPoland
  2. 2.Faculty of ChemistryMaria Curie-Skłodowska UniversityLublinPoland

Personalised recommendations