Advertisement

Catalysis Letters

, Volume 149, Issue 1, pp 313–321 | Cite as

In Situ Study of Self-sustained Oscillations in Propane Oxidation and Propane Steam Reforming with Oxygen Over Nickel

  • V. V. KaichevEmail author
  • A. A. Saraev
  • A. Yu. Gladky
  • I. P. Prosvirin
  • A. Knop-Gericke
  • V. I. Bukhtiyarov
Article
  • 74 Downloads

Abstract

Self-sustained reaction rate oscillations in the oxidation of propane and in the propane steam reforming with oxygen over nickel foil have been studied in situ by near-ambient pressure X-ray photoelectron spectroscopy and mass-spectrometry. It was found that regular relaxation-type oscillations in both reactions proceed under similar conditions. In the former case, the peaks of CO, CO2, H2, and H2O were detected by mass-spectrometry as gas-phase products. In contrast, in the latter case, after addition of water to the reaction feed, the mass-spectrometric signal of water decreased simultaneously with the signals of O2 and C3H8, whereas the signals of CO, CO2, and H2 increased. It means that in the presence of water in the reaction feed, the propane steam reforming proceeds with a significant rate. In both cases, the oscillations arise due to spontaneous oxidation and reduction of the catalyst. According to the Ni2p and O1s core-level spectra measured in situ, the high-active catalyst surface is represented by nickel in the metallic state, and the transition to the low-active state is accompanied by the growth of a NiO film on the catalyst surface. The oscillations in the gas phase are accompanied by oscillations in the catalyst temperature, which reflects proceeding endothermic and exothermic processes. An oscillatory mechanism, which can be common for oxidative catalytic reactions over transitional metals, is discussed.

Graphical Abstract

Keywords

Heterogeneous catalysis Non-linearity Oscillations XPS 

Notes

Acknowledgements

This work was financially supported by Budget Project No. АААА-А17-117041710080-4 for the Boreskov Institute of Catalysis SB RAS.

References

  1. 1.
    Hugo P (1970) Stabilität und zeitverhalten von durchfluß-kreislauf-reaktoren. Ber Bunsenges Phys Chem 74:121–127Google Scholar
  2. 2.
    Ertl G (1990) oscillatory catalytic reactions at single-crystal surfaces. In: Eley DD, Paul HP, Weisz B (eds) Advances in Catalysis, vol 37. Academic Press, CambridgeGoogle Scholar
  3. 3.
    Slinko MM, Jaeger NI (1994) Oscillating heterogeneous catalytic systems. Elsevier, AmsterdamGoogle Scholar
  4. 4.
    Imbihl R, Ertl G (1995) Oscillatory kinetics in heterogeneous catalysis. Chem Rev 95:697–733CrossRefGoogle Scholar
  5. 5.
    Ertl G, Norton PR, Rüstig J (1982) Kinetic oscillations in the platinum-catalyzed oxidation of CO. Phys Rev Lett 49:177–180CrossRefGoogle Scholar
  6. 6.
    Kokkofitis C, Karagiannakis G, Zisekas S, Stoukides M (2005) Catalytic study and electrochemical promotion of propane oxidation on Pt/YSZ. J Catal 234:476–487CrossRefGoogle Scholar
  7. 7.
    Kokkofitis C, Stoukides M (2006) Rate and oxygen activity oscillations during propane oxidation on Pt/YSZ. J Catal 243:428–437CrossRefGoogle Scholar
  8. 8.
    Hendriksen BLM, Ackermann MD, van Rijn R, Stoltz D, Popa I, Balmes O, Resta A, Wermeille D, Felici R, Ferrer S, Frenken JWM (2010) The role of steps in surface catalysis and reaction oscillations. Nature Chem 2:730–734CrossRefGoogle Scholar
  9. 9.
    Kimmerle B, Baiker A, Grunwaldt J-D (2010) Oscillatory behaviour of catalytic properties, structure and temperature during the catalytic partial oxidation of methane on Pd/Al2O3. Phys Chem Chem Phys 12:2288–2291CrossRefGoogle Scholar
  10. 10.
    Bychkov VY, Tyulenin YP, Slinko MM, Korchak VN (2011) Oscillatory behaviour during C2–C4 hydrocarbon oxidation over palladium catalysts. Catal Lett 141:602–607CrossRefGoogle Scholar
  11. 11.
    Kaichev VV, Gladky AY, Prosvirin IP, Saraev AA, Hävecker M, Knop-Gericke A, Schlögl R, Bukhtiyarov VI (2013) In situ XPS study of self-sustained oscillations in catalytic oxidation of propane over nickel. Surf Sci 609:113–118CrossRefGoogle Scholar
  12. 12.
    Bychkov VY, Tyulenin YP, Gorenberg AY, Sokolov S, Korchak VN (2014) Evolution of Pd catalyst structure and activity during catalytic oxidation of methane and ethane. Appl Catal A 485:1–9CrossRefGoogle Scholar
  13. 13.
    Figufbghghheroa SJA, Newton MA (2014) What drives spontaneous oscillations during CO oxidation using O2 over supported Rh/Al2O3 catalysts? J Catal 312:69–77CrossRefGoogle Scholar
  14. 14.
    Bychkov VY, Tulenin YP, Slinko MM, Khudorozhkov AK, Bukhtiyarov VI, Sokolov S, Korchak VN (2016) Self-oscillations during methane oxidation over Pd/Al2O3: variations of Pd oxidation state and their effect on Pd catalytic activity. Appl Catal A 522:40–44CrossRefGoogle Scholar
  15. 15.
    Kaichev VV, Teschner D, Saraev AA, Kosolobov SS, Gladky AY, Prosvirin IP, Rudina NA, Ayupov AB, Blume R, Hävecker M, Knop-Gericke A, Schlögl R, Latyshev AV, Bukhtiyarov VI (2016) Evolution of self-sustained kinetic oscillations in the catalytic oxidation of propane over a nickel foil. J Catal 334:23–33CrossRefGoogle Scholar
  16. 16.
    Bychkov VY, Tulenin YP, Slinko MM, Gorenberg AY, Korchak VN (2017) The study of self-oscillations during CH4 oxidation over Ni by the pulse method: is it possible? Catal Lett 147:2664–2673CrossRefGoogle Scholar
  17. 17.
    Kaichev VV, Saraev AA, Gladky AY, Prosvirin IP, Blume R, Teschner D, Hävecker M, Knop-Gericke A, Schlögl R, Bukhtiyarov VI (2017) Reversible bulk oxidation of Ni foil during oscillatory catalytic oxidation of propane: a novel type of spatiotemporal self-organization. Phys Rev Lett 119:026001CrossRefGoogle Scholar
  18. 18.
    Saraev AA, Vinokurov ZS, Kaichev VV, Shmakov AN, Bukhtiyarov VI (2017) The origin of self-sustained reaction-rate oscillations in the oxidation of methane over nickel: an Operando XRD and mass spectrometry study. Catal Sci Technol 7:1646–1649CrossRefGoogle Scholar
  19. 19.
    Gladky AY, Kaichev VV, Ermolaev VK, Bukhtiyarov VI, Parmon VN (2005) Propane Oxidation on nickel in a self-oscillation mode. Kinet Catal 46:251–259CrossRefGoogle Scholar
  20. 20.
    Knop-Gericke A, Kleimenov E, Hävecker M, Blume R, Teschner D, Zafeiratos S, Schlögl R, Bukhtiyarov VI, Kaichev VV, Prosvirin IP, Nizovskii AI, Bluhm H, Barinov A, Dudin P, Kiskinova M (2009) Chap. 4. X-Ray photoelectron spectroscopy for investigation of heterogeneous catalytic processes. Adv Catal 52:213–272Google Scholar
  21. 21.
    Mishchenko KP, Ravdelya AA (Eds.) (1974) Brief handbook of physical and chemical values. Khimiya, Leningrad (in Russian)Google Scholar
  22. 22.
    Rizzi GA, Petukhov M, Sambi M, Granozzi G (2003) Structure of highly strained ultrathin Ni films on Pd(100). Surf Sci 522:1–7CrossRefGoogle Scholar
  23. 23.
    Tao JG, Pan JS, Huan CHA, Zhang Z, Sun Y, Chai JW, Wang SJ (2008) Evolution of the 2p satellite of Ni nano-clusters on TiO2(001) surfaces. J Phys Condens Matter 20:485002CrossRefGoogle Scholar
  24. 24.
    Hüfner S (1995) Photoelectron spectroscopy. Springer, BerlinCrossRefGoogle Scholar
  25. 25.
    Srivastava P, Haack N, Wende H, Chauvistré R, Baberschke K (1997) Modifications of the electronic structure of Ni/Cu(001) as a function of the film thickness. Phys Rev B 56:R4398–R4401CrossRefGoogle Scholar
  26. 26.
    Nesvizhskii AI, Ankudinov AL, Rehr JJ, Baberschke K (2000) Interpretation of X-ray magnetic circular dichroism and X-ray absorption near-edge structure in Ni. Phys Rev B 62:15295–15298CrossRefGoogle Scholar
  27. 27.
    McIntyre NS, Cook MG (1975) X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper. Anal Chem 47:2208–2213CrossRefGoogle Scholar
  28. 28.
    Shalvoy RB, Reucroft PJ, Davis BH (1979) Characterization of coprecipitated nickel on silica methanation catalysts by X-ray photoelectron spectroscopy. J Catal 56:336–348CrossRefGoogle Scholar
  29. 29.
    Li CP, Proctor A, Hercules DM (1984) Curve fitting analysis of ESCA Ni2p spectra of nickel-oxygen compounds and Ni/Al2O3 catalysts. Appl Spectrosc 38:880–886CrossRefGoogle Scholar
  30. 30.
    Alders D, Voogt FC, Hibma T, Sawatzky GA (1996) Nonlocal screening effects in 2p X-ray photoemission spectroscopy of NiO (100). Phys Rev B 54:7716–7719CrossRefGoogle Scholar
  31. 31.
    Payne BP, Biesinger MC, McIntyre NS (2009) The study of polycrystalline nickel metal oxidation by water vapour. J Electron Spectrosc Relat Phenom 175:55–65CrossRefGoogle Scholar
  32. 32.
    Kosova NV, Kaichev VV, Bukhtiyarov VI, Kellerman DG, Devyatkina ET, Larina TV (2003) Electronic state of cobalt and oxygen ions in stoichiometric and nonstoichiometric Li1+xCoO2 before and after delithiation according to XPS and DRS. J Power Sources 119–121:669–673CrossRefGoogle Scholar
  33. 33.
    Kaichev VV, Bukhtiyarov VI, Hävecker M, Knop-Gercke A, Mayer RW, Schlögl R (2003) The nature of electrophilic and nucleophilic oxygen adsorbed on silver. Kinet Catal 44:432–440CrossRefGoogle Scholar
  34. 34.
    Öfner H, Zaera F (1997) Surface defect characterization in oxygen-dosed nickel surfaces and in NiO thin films by CO adsorption–desorption experiments. J Phys Chem B 101:9069–9076CrossRefGoogle Scholar
  35. 35.
    Tyuliev GT, Kostov KL (1999) XPS/HREELS study of NiO films grown on Ni(111). Phys Rev B 60:2900–2907CrossRefGoogle Scholar
  36. 36.
    Pirug G, Knauff O, Bonzel HP (1994) Structural and chemical aspects of H2O adsorption on Ni(110). Surf Sci 321:58–70CrossRefGoogle Scholar
  37. 37.
    Leisenberger FP, Koller G, Sock M, Surnev S, Ramsey MG, Netzer FP, Klötzer B, Hayek K (2000) Surface and subsurface oxygen on Pd(111). Surf Sci 445:380–393CrossRefGoogle Scholar
  38. 38.
    Yu J, Rosso KM, Bruemmer SM (2012) Charge and ion transport in NiO and aspects of Ni oxidation from first principles. J Phys Chem C 116:1948–1954CrossRefGoogle Scholar
  39. 39.
    Kaichev VV, Saraev AA, Matveev AV, Dubinin YV, Knop-Gericke A, Bukhtiyarov VI (2018) In Situ NAP-XPS and mass spectrometry study of the oxidation of propylene over palladium. J Phys Chem C 122:4315–4323CrossRefGoogle Scholar
  40. 40.
    Bychkov VY, Tyulenin YP, Slinko MM, Korchak VN (2007) Oscillatory Behaviour during ethane oxidation over nickel and cobalt catalysts. Catal Lett 119:339–345CrossRefGoogle Scholar
  41. 41.
    Bychkov VY, Tulenin YP, Slinko MM, Gordienko YA, Korchak VN (2018) New oscillating system: CO oxidation over Ni. Catal Lett 148:653–659CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • V. V. Kaichev
    • 1
    • 2
    Email author
  • A. A. Saraev
    • 1
    • 2
  • A. Yu. Gladky
    • 1
  • I. P. Prosvirin
    • 1
    • 2
  • A. Knop-Gericke
    • 3
  • V. I. Bukhtiyarov
    • 1
    • 2
  1. 1.Boreskov Institute of CatalysisNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Department of Inorganic ChemistryFritz Haber InstituteBerlinGermany

Personalised recommendations