Catalysis Letters

, Volume 149, Issue 1, pp 127–140 | Cite as

Low Temperature CO Oxidation Over a Novel Nano-Structured, Mesoporous CeO2 Supported Au Catalyst

  • Dolly Valechha
  • Suresh Kumar MegarajanEmail author
  • Ahmed Al-Fatesh
  • Heqing Jiang
  • Nitin LabhasetwarEmail author


Highly active, nano-structured, mesoporous CeO2 (CN) supported Au catalysts have been studied for low temperature catalytic CO oxidation. These catalysts were synthesized by first synthesizing the CeO2 support via chitosan template process followed by 1 wt% Au incorporation using precipitation-deposition method. A complete CO conversion into CO2 was achieved at room temperature over Au–CeO2 (A-CN-110) catalyst with a specific rate of 2.65 molCO.gAu−1 h−1. The A-CN-110 catalyst treated under different oxidation and reduction atmosphere was also very active at room temperature. The CO oxidation activity of CN based materials was also compared with commercial CeO2 (C) supported catalysts, as well as those reported in the literature. The catalysts were characterized in detail using p-XRD, BET-SA, ICP-OES, SEM, XPS, EDX, H2-TPR, O2-TPD, and HR-TEM techniques. The structure property relationship clearly demonstrates that the key factors for superior catalytic activity are; reducible nature of support/improved defects (Ce3+), lower crystallite size, and high surface area. Oxidation state, nature of dispersion, and particle size of Au also influences the catalytic activity. Strongly bound gold nano-particles with ceria surface assist the reducibility of the surface oxygen, which enhances the catalytic activity.

Graphical Abstract


Nano-structured CeO2 CO oxidation Au nano-particles Catalyst Catalysis 



Authors would like to acknowledge Director CSIR-NEERI for providing research facilities. Some authors extend their appreciation to the International Scientific Partnership Program ISPP at King Saud University for funding this research work through ISPP# 0057. The CSIR-NEERI KRC reference number is CSIR-NEERI/KRC/2018/July/ERMD/1. SKM and HQ acknowledge the National Natural Science Foundation of China (21550110496) for providing financial support to them.


  1. 1.
    Royer S, Duprez D (2011) ChemCatChem 3:24–65CrossRefGoogle Scholar
  2. 2.
    Cuenya BR (2010) Thin Solid Films 518:3127–3150CrossRefGoogle Scholar
  3. 3.
    Min BK, Friend CM (2007) Chem Rev 107:2709–2724CrossRefGoogle Scholar
  4. 4.
    Haruta M (2004) J New Mater Electrochem Syst 7:163–172Google Scholar
  5. 5.
    Haruta M, Yamada N, Kobayashi T, Iijima S (1989) J Catal 115:301–309CrossRefGoogle Scholar
  6. 6.
    Knell A, Barnickel P, Baiker A, Wokaun A (1992) J Catal 137:306–321CrossRefGoogle Scholar
  7. 7.
    Solsona B, Aylon E, Murillo R, Mastral AM, Monzonis A, Agouram S, Davies TE, Taylor SH, Garcia T (2011) J Hazard Mater 187:544–552CrossRefGoogle Scholar
  8. 8.
    Ribeiro NFP, Mendes FMT, Perez CAC, Souza MMVM, Schmal M (2008) Appl Catal A 347:62–71CrossRefGoogle Scholar
  9. 9.
    Venezia AM, Pantaleo G, Longo A, Di Carlo G, Casaletto MP, Liotta FL, Deganello G (2005) J Phys Chem B 109:2821–2827CrossRefGoogle Scholar
  10. 10.
    Overbury S, Schwartz V, Mullins D, Yan W, Dai S (2006) J Catal 241:56–65CrossRefGoogle Scholar
  11. 11.
    Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet MJ, Delmon B (1993) J Catal 144:175–192CrossRefGoogle Scholar
  12. 12.
    Haruta M (2007) ChemPhysChem 8:1911–1913CrossRefGoogle Scholar
  13. 13.
    Cargnello M, Gentilini C, Montini T, Fonda E, Mehraeen S, Chi M, Herrera-Collado M, Browning ND, Polizzi S, Pasquato L, Fornasiero P (2010) Chem Mater 22:4335–4345CrossRefGoogle Scholar
  14. 14.
    Fu Q, Weber A, Flytzani-Stephanopoulos M (2001) Catal Lett 77:87–95CrossRefGoogle Scholar
  15. 15.
    Scirè S, Minicò S, Crisafulli C, Satriano C, Pistone A (2003) Appl Catal B 40:43–49CrossRefGoogle Scholar
  16. 16.
    Ying F, Wang S, Au C-T, Lai S-Y (2011) Microporous Mesoporous Mater 142:308–315CrossRefGoogle Scholar
  17. 17.
    Yi G, Xu Z, Guo G, Tanaka K-i, Yuan Y (2009) Chem Phys Lett 479:128–132CrossRefGoogle Scholar
  18. 18.
    Arena F, Famulari P, Trunfio G, Bonura G, Frusteri F, Spadaro L (2006) Appl Catal B 66:81–91CrossRefGoogle Scholar
  19. 19.
    Zhang J, Jin Y, Li C, Shen Y, Han L, Hu Z, Di X, Liu Z (2009) Appl Catal B 91:11–20CrossRefGoogle Scholar
  20. 20.
    Karpenko A, Leppelt R, Cai J, Plzak V, Chuvilin A, Kaiser U, Behm RJ (2007) J Catal 250:139–150CrossRefGoogle Scholar
  21. 21.
    Karpenko A, Denkwitz Y, Plzak V, Cai J, Leppelt R, Schumacher B, Behm RJ (2007) Catal Lett 116:105–115CrossRefGoogle Scholar
  22. 22.
    Andreeva D, Idakiev V, Tabakova T, Ilieva L, Falaras P, Bourlinos A, Travlos A (2002) Catal Today 72:51–57CrossRefGoogle Scholar
  23. 23.
    Carabineiro SAC, Bastos SST, Órfão JJM, Pereira MFR, Delgado JJ, Figueiredo JL (2010) Appl Catal A 381:150–160CrossRefGoogle Scholar
  24. 24.
    Chowdhury S, Lin K-S (2011) J Nanomater 2011:1–16CrossRefGoogle Scholar
  25. 25.
    Huang W, Sun G, Cao T (2017) Chem Soc Rev 46:1977–2000CrossRefGoogle Scholar
  26. 26.
    Chen S, Luo L, Jiang Z, Huang W (2015) ACS Catal 5:1653–1662CrossRefGoogle Scholar
  27. 27.
    Ho C, Yu JC, Kwong T, Mak AC, Lai S (2005) Chem Mater 17:4514–4522CrossRefGoogle Scholar
  28. 28.
    Zhang D, Niu F, Li H, Shi L, Fang J (2011) Powder Technol 207:35–41CrossRefGoogle Scholar
  29. 29.
    Zhou Z, Kooi S, Flytzani-Stephanopoulos M, Saltsburg H (2008) Adv Funct Mater 18:2801–2807CrossRefGoogle Scholar
  30. 30.
    Carabineiro SAC, Silva AMT, Dražić G, Tavares PB, Figueiredo JL (2010) Catal Today 154:21–30CrossRefGoogle Scholar
  31. 31.
    Wu Z, Li M, Overbury SH (2012) J Catal 285:61–73CrossRefGoogle Scholar
  32. 32.
    Acosta B, Smolentseva E, Beloshapkin S, Rangel R, Estrada M, Fuentes S, Simakov A (2012) Appl Catal A 449:96–104CrossRefGoogle Scholar
  33. 33.
    Sun C, Li H, Chen L (2007) J Phys Chem Solids 68:1785–1790CrossRefGoogle Scholar
  34. 34.
    Zhong L-S, Hu J-S, Cao A-M, Liu Q, Song W-G, Wan L-J (2007) Chem Mater 19:1648–1655CrossRefGoogle Scholar
  35. 35.
    Zhang H, Yan X, Li W (2009) Chin J Catal 30:1085–1090CrossRefGoogle Scholar
  36. 36.
    Yuan Q, Duan HH, Li LL, Li ZX, Duan WT, Zhang LS, Song WG, Yan CH (2010) Adv Mater 22:1475–1478CrossRefGoogle Scholar
  37. 37.
    Pillai UR, Deevi S (2006) Appl Catal A 299:266–273CrossRefGoogle Scholar
  38. 38.
    Manzoli M, Boccuzzi F, Chiorino A, Vindigni F, Deng W, Flytzanistephanopoulos M (2007) J Catal 245:308–315CrossRefGoogle Scholar
  39. 39.
    Abdelsayed V, Aljarash A, El-Shall MS, Al Othman ZA, Alghamdi AH (2009) Chem Mater 21:2825–2834CrossRefGoogle Scholar
  40. 40.
    Lai S-Y, Qiu Y, Wang S (2006) J Catal 237:303–313CrossRefGoogle Scholar
  41. 41.
    Niu F, Zhang D, Shi L, He X, Li H, Mai H, Yan T (2009) Mater Lett 63:2132–2135CrossRefGoogle Scholar
  42. 42.
    Valechha D, Lokhande S, Klementova M, Subrt J, Rayalu S, Labhsetwar N (2011) J Mater Chem 21:3718CrossRefGoogle Scholar
  43. 43.
    Perrichon V, Laachir A, Abouarnadasse S, Touret O, Blanchard G (1995) Appl Catal A 129:69–82CrossRefGoogle Scholar
  44. 44.
    Xiao G, Li S, Li H, Chen L (2009) Microporous Mesoporous Mater 120:426–431CrossRefGoogle Scholar
  45. 45.
    Xian CN, Li H, Chen LQ, Lee JS (2011) Microporous Mesoporous Mater 142:202–207CrossRefGoogle Scholar
  46. 46.
    Kumar Megarajan S, Rayalu S, Teraoka Y, Labhsetwar N (2014) J Mol Catal A 385:112–118CrossRefGoogle Scholar
  47. 47.
    Rodriguez JA, Liu P, Hrbek J, Evans J, Pérez M (2007) Angew Chem Int Ed 119:1351–1354CrossRefGoogle Scholar
  48. 48.
    Yi G, Yang H, Li B, Lin H, Tanaka K-i, Yuan Y (2010) Catal Today 157:83–88CrossRefGoogle Scholar
  49. 49.
    Guzman J, Carrettin S, Corma A (2005) J Am Chem Soc 127:3286–3287CrossRefGoogle Scholar
  50. 50.
    Chang L-H, Sasirekha N, Rajesh B, Chen Y-W (2007) Sep Purif Technol 58:211–218CrossRefGoogle Scholar
  51. 51.
    Zhou Z, Flytzani-Stephanopoulos M, Saltsburg H (2011) J Catal 280:255–263CrossRefGoogle Scholar
  52. 52.
    Qian K, Lv S, Xiao X, Sun H, Lu J, Luo M, Huang W (2009) J Mol Catal A 306:40–47CrossRefGoogle Scholar
  53. 53.
    Kim HY, Henkelman G (2013) J Phys Chem Lett 4:216–221CrossRefGoogle Scholar
  54. 54.
    Kim HY, Lee HM, Henkelman G (2012) J Am Chem Soc 134:1560–1570CrossRefGoogle Scholar
  55. 55.
    Shapovalov V, Metiu H (2007) J Catal 245:205–214CrossRefGoogle Scholar
  56. 56.
    Scirè S, Riccobene PM, Crisafulli C (2010) Appl Catal B 101:109–117CrossRefGoogle Scholar
  57. 57.
    Uchiyama T, Yoshida H, Kuwauchi Y, Ichikawa S, Shimada S, Haruta M, Takeda S (2011) Angew Chem Int Ed 50:10157–10160CrossRefGoogle Scholar
  58. 58.
    Morfin F, Ait-Chaou A, Lomello M, Rousset J-L (2015) J Catal 331:210–216CrossRefGoogle Scholar
  59. 59.
    Chen Z, Gao Q (2008) Appl Catal B 84:790–796CrossRefGoogle Scholar
  60. 60.
    Han M, Wang X, Shen Y, Tang C, Li G, Smith RL (2010) J Phys Chem C 114:793–798CrossRefGoogle Scholar
  61. 61.
    Tana, Wang F, Li H, Shen W (2011) Catal Today 175:541–545CrossRefGoogle Scholar
  62. 62.
    Huang X-S, Sun H, Wang L-C, Liu Y-M, Fan K-N, Cao Y (2009) Appl Catal B 90:224–232CrossRefGoogle Scholar
  63. 63.
    Wang X-Y, Wang S-P, Wang S-R, Zhao Y-Q, Huang J, Zhang S-M, Huang W-P, Wu S-H (2006) Catal Lett 112:115–119CrossRefGoogle Scholar
  64. 64.
    Jiao Y, Wang F, Ma X, Tang Q, Wang K, Guo Y, Yang L (2013) Microporous Mesoporous Mater 176:1–7CrossRefGoogle Scholar
  65. 65.
    López JM, Arenal R, Puértolas B, Mayoral Á, Taylor SH, Solsona B, García T (2014) J Catal 317:167–175CrossRefGoogle Scholar
  66. 66.
    Wang H, Shen J, Huang J, Xu T, Zhu J, Zhu Y, Li C (2017) Nanoscale 9:16817–16825CrossRefGoogle Scholar
  67. 67.
    Valechha D, Megarajan SK, Fakeeha AH, AL-Fatesh AS, Labhasetwar NK (2017) Catal Lett 147:2893–2900CrossRefGoogle Scholar
  68. 68.
    Zhang R, Lu K, Zong L, Tong S, Wang X, Feng G (2017) Appl Surf Sci 416:183–190CrossRefGoogle Scholar
  69. 69.
    Ma X, Tang K, Liu W, Genyuan Z, Zhu W, Wang S, Guo Y, Yang H, Guo J, Yang Y (2017) Catal Lett 147:1322–1332CrossRefGoogle Scholar
  70. 70.
    Qi J, Chen J, Li G, Li S, Gao Y, Tang Z (2012) Energy Environ Sci 5:8937–8941CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.ERM Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI)NagpurIndia
  2. 2.Qingdao Key Laboratory of Functional Membrane Material and Membrane Technology, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoPeople’s Republic of China
  3. 3.Chemical Engineering Department, College of EngineeringKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations