Advertisement

Catalysis Letters

, Volume 149, Issue 1, pp 196–202 | Cite as

Chlorate Elimination by Catalytically Hydrogenation, Catalyst Development and Characterization

  • László VanyorekEmail author
  • Olivér Bánhidi
  • Gábor Muránszky
  • Emőke Sikora
  • Ádám Prekob
  • Zsanett Boros
  • László Farkas
  • Béla Viskolcz
Article
  • 22 Downloads

Abstract

In the course of the experiments nanostructured catalysts have been developed for hydrogenation of ClO3 ions. Different nitrogen doped carbon nanotube (N-BCNT) coated catalyst pellets have been synthetized by the catalytic chemical vapour deposition (CCVD) method. These core–shell structured pellets were used as supports of palladium catalysts. The catalysts were examined by scanning electron microscopy (SEM), energy dispersed X-ray spectrometry (EDX) and X-ray diffractometry (XRD). The catalytic activity of these Pd/BCNT pellets were tested in hydrogenation of chlorate in a continuous flow system. The hydrogenation process was followed by using of a miniaturized spectrophotometric cell developed by us. The catalysts proved to be efficient, because of the higher chlorate hydrogenation 90.5% chlorate conversion could be reached.

Graphical Abstract

Keywords

Chlorate Hydrogenation N-BCNT Palladium catalyst 

Notes

Acknowledgements

This research was supported by the European Union and the Hungarian State, co-financed by the European Regional Development Fund in the framework of the GINOP-2.3.4-15-2016-00004 project, aimed to promote the cooperation between the higher education and the industry.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10562_2018_2602_MOESM1_ESM.docx (1002 kb)
Supplementary material 1 (DOCX 1001 KB)

References

  1. 1.
    Westerhoff P (2003) J Environ Eng 129:10–16CrossRefGoogle Scholar
  2. 2.
    Polk J, Murray C, Onewokae C, Tolbert DE, Togna AP, Guarini WJ, Frisch S, Del Vecchio M (2001) In: 4th Tri-Services Environmental Technology Symposium, San Diego, CA, USAGoogle Scholar
  3. 3.
    Morss C (2003) Pollut Eng 35:18Google Scholar
  4. 4.
    Rusanova M, Polaskova P, Muzikar M, Fawcett R (2006) Electrochim 51:3097–3101CrossRefGoogle Scholar
  5. 5.
    Noguchi H, Nakajima A, Watanabe T, Hashimoto K (2002) Water Sci Technol 46:27–31CrossRefGoogle Scholar
  6. 6.
    EPA, Perchlorate treatment technology update, Federal Facilities Forum Issue Paper (2005) http://www.epa.gov/tio/tsp. Accessed 2018
  7. 7.
    Batista JR, McGarvey FX, Vieria AR (2000) The removal of perchlorate from waters using ion-exchange resins, Perchlorate in the environment. Kluwer Academic/Plenum Press, New YorkGoogle Scholar
  8. 8.
    Soares OSGP, Freitas CMAS, Fonseca AM, Órfão JJM, Pereira MFR, Neves IC (2016) Chem Eng J 291:199–205CrossRefGoogle Scholar
  9. 9.
    Chen H, Xu Z, Wan H, Zheng J, Yinb D, Zheng S (2010) Appl Catal B 96:307–313CrossRefGoogle Scholar
  10. 10.
    Zhang Z, Luo Y, Guo Y, Shi W, Wang W, Zhang B, Zhang R, Bao X, Wu S, Cui F (2018) Chem Eng J 344:114–123CrossRefGoogle Scholar
  11. 11.
    Zhou J, Zhou X, Li L, Chen Q (2018) Appl Catal A 562:142–149CrossRefGoogle Scholar
  12. 12.
    Palomares AE, Franch C, Yuranova T, Kiwi-Minsker L, García-Bordeje E, Derrouiche S (2014) Appl Catal B 146:186–191CrossRefGoogle Scholar
  13. 13.
    Hurley KD, Shapley JR (2007) Environ Sci Technol 41:2044–2049CrossRefGoogle Scholar
  14. 14.
    Kuznetsova LI, Kuznetsova NI, Koscheeva SV, Zaikovskii VI, Lisitsyn AS, Kaprielova KM, Kirillova NV, Twardowski Z (2012) Appl Catal A 427–428:8–15CrossRefGoogle Scholar
  15. 15.
    Li C-H, Yu Z-X, Yao K-F, Ji S-F, Liang J (2005) J Mol Catal A: Chem 226:101–105CrossRefGoogle Scholar
  16. 16.
    Liao HG, Xiao YJ, Zhang HK, Liu PL, You KY, Hean C, Luo W (2012) Catal Comm 19:80–84CrossRefGoogle Scholar
  17. 17.
    Garcia J, Gomes HT, Serp P, Kalck P, Figueiredo JL, Faria JL (2005) Catal Today 102–103:101–109CrossRefGoogle Scholar
  18. 18.
    Liu ZJ, Xu Z, Yuan ZY, Lu D, Chen W, Zhou W (2001) Catal Lett 72:203CrossRefGoogle Scholar
  19. 19.
    Restivo J, Soares OSGP, Órfão JJM, Pereira MFR (2017) Chem Eng J 309:197–205CrossRefGoogle Scholar
  20. 20.
    Chizari K, Janowska I, Houllé M, Florea I, Ersen O, Romero T, Bernhardt P, Ledoux MJ, Pham-Huu C (2010) Appl Catal A 380:72–80CrossRefGoogle Scholar
  21. 21.
    García-García FR, Álvarez-Rodríguez J, Rodríguez-Ramos I, Guerrero-Ruiz A (2010) Carbon 48:267–276CrossRefGoogle Scholar
  22. 22.
    https://www.mikroe.com. Accessed 2018
  23. 23.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • László Vanyorek
    • 1
    • 3
    Email author
  • Olivér Bánhidi
    • 1
    • 3
  • Gábor Muránszky
    • 1
    • 3
  • Emőke Sikora
    • 1
    • 3
  • Ádám Prekob
    • 1
    • 3
  • Zsanett Boros
    • 2
  • László Farkas
    • 2
  • Béla Viskolcz
    • 1
    • 3
  1. 1.Institute of ChemistryUniversity of MiskolcMiskolcHungary
  2. 2.Wanhua-BorsodChem LtdKazincbarcikaHungary
  3. 3.

Personalised recommendations