Catalysis Letters

, Volume 149, Issue 1, pp 119–126 | Cite as

Facile Tuning of Metal/Oxide Interface in Hollow Nanoreactor Affecting Catalytic Activity and Selectivity

  • Si Woo Lee
  • Hyosun Lee
  • Dong-Gyu Lee
  • Sunyoung Oh
  • In Su LeeEmail author
  • Jeong Young ParkEmail author


To develop cutting-edge catalysts with excellent catalytic performance, novel synthetic techniques are required. In particular, hollow oxide nanoparticles are attracting much attention as advantageous nanoreactors in which the interior cavity can be selectively functionalized with catalytically active metal nanoparticles and various oxide supports. In this report, we demonstrate that the metal/oxide interface inside a hollow nanoparticle can be changed from (Mn3O4/Pt NPs)@h-SiO2 to [Mn3O4(0.5)/CeO2(0.5)/Pt NPs]@h-SiO2 via the galvanic replacement reaction, leading to improved catalytic activity and selectivity. The change in selective methanol oxidation is determined by the CO oxidation and OH formation reactions at the metal/oxide interface. This work implies that modification of the metal/oxide interface in a hollow oxide nanosphere is an effective way to improve catalytic performance for a desired product in heterogeneous catalysis.

Graphical Abstract


Hollow silica Nanoreactor Metal/oxide interface H2 oxidation Isotope effect Methanol oxidation Selectivity Post synthesis 



This work was supported by the Institute for Basic Science (IBS) [IBS-R004]. D.-G. Lee and I. S. Lee acknowledge support from the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (MSIP) (Grant NRF-2016R1A3B1907559).

Supplementary material

10562_2018_2600_MOESM1_ESM.pdf (512 kb)
Supplementary material 1 (PDF 511 KB)


  1. 1.
    Somorjai GA, Frei H, Park JY (2009) J Am Chem Soc 131:16589CrossRefGoogle Scholar
  2. 2.
    An K, Somorjai GA (2015) Catal Lett 145:233CrossRefGoogle Scholar
  3. 3.
    Song H (2015) Acc Chem Res 48:491CrossRefGoogle Scholar
  4. 4.
    Lee J, Kim SM, Lee IS (2014) Nano Today 9:631CrossRefGoogle Scholar
  5. 5.
    Park JY, Baker LR, Somorjai GA (2015) Chem Rev 115:2781CrossRefGoogle Scholar
  6. 6.
    Kattel S, Liu P, Chen JG (2017) J Am Chem Soc 139:9739CrossRefGoogle Scholar
  7. 7.
    Schwab G, Koller K (1968) J Am Chem Soc 90:3078CrossRefGoogle Scholar
  8. 8.
    Tauster S, Fung S, Garten RL (1978) J Am Chem Soc 100:170CrossRefGoogle Scholar
  9. 9.
    Tauster S, Fung S, Baker R, Horsley J (1981) Science 211:1121CrossRefGoogle Scholar
  10. 10.
    Park JY, Kim SM, Lee H, Nedrygailov II (2015) Acc Chem Res 48:2475CrossRefGoogle Scholar
  11. 11.
    Lykhach Y, Kozlov SM, Skála T, Tovt A, Stetsovych V, Tsud N, Dvořák F, Johánek V, Neitzel A, Mysliveček J (2016) Nat Mater 15:284CrossRefGoogle Scholar
  12. 12.
    Cargnello M, Doan-Nguyen VV, Gordon TR, Diaz RE, Stach EA, Gorte RJ, Fornasiero P, Murray CB (2013) Science 341:771CrossRefGoogle Scholar
  13. 13.
    Mehta P, Greeley J, Delgass WN, Schneider WF (2017) ACS Catal 7:4707CrossRefGoogle Scholar
  14. 14.
    Du X, Zhang D, Shi L, Gao R, Zhang J (2012) J Phys Chem C 116:10009CrossRefGoogle Scholar
  15. 15.
    Yoon S, Oh K, Liu F, Seo JH, Somorjai GA, Lee JH, An K (2018) ACS Catal 8:5391CrossRefGoogle Scholar
  16. 16.
    Ro I, Liu Y, Ball MR, Jackson DH, Chada JP, Sener C, Kuech TF, Madon RJ, Huber GW, Dumesic JA (2016) ACS Catal 6:7040CrossRefGoogle Scholar
  17. 17.
    Zhao G, Yang F, Chen Z, Liu Q, Ji Y, Zhang Y, Niu Z, Mao J, Bao X, Hu P (2017) Nat Commun 8:14039CrossRefGoogle Scholar
  18. 18.
    Park D, Kim SM, Kim SH, Yun JY, Park JY (2014) Appl Catal A 480:25CrossRefGoogle Scholar
  19. 19.
    Joo SH, Park JY, Tsung C-K, Yamada Y, Yang P, Somorjai GA (2009) Nat Mater 8:126CrossRefGoogle Scholar
  20. 20.
    Kim SM, Jeon M, Kim KW, Park J, Lee IS (2013) J Am Chem Soc 135:15714CrossRefGoogle Scholar
  21. 21.
    Lee D-G, Kim SM, Kim SM, Lee SW, Park JY, An K, Lee IS (2016) Chem Mater 28:9049CrossRefGoogle Scholar
  22. 22.
    Chen Z, Cui Z-M, Niu F, Jiang L, Song W-G (2010) Chem Commun 46:6524CrossRefGoogle Scholar
  23. 23.
    Yu Y, Cao CY, Chen Z, Liu H, Li P, Dou ZF, Song WG (2013) Chem Commun 49:3116CrossRefGoogle Scholar
  24. 24.
    Na HB, Lee JH, An K, Park YI, Park M, Lee IS, Nam DH, Kim ST, Kim SH, Kim SW (2007) Angew Chem 119:5493CrossRefGoogle Scholar
  25. 25.
    Anisur RM, Shin J, Choi HH, Yeo KM, Kang EJ, Lee IS (2010) J Mater Chem 20:10615CrossRefGoogle Scholar
  26. 26.
    Oh S, Qadir K, Park JY (2017) Catal Lett 147:39CrossRefGoogle Scholar
  27. 27.
    Oh MH, Yu T, Yu S-H, Lim B, Ko K-T, Willinger M-G, Seo D-H, Kim BH, Cho MG, Park J-H (2013) Science 340:964CrossRefGoogle Scholar
  28. 28.
    Chen Y, Zheng H, Guo Z, Zhou C, Wang C, Borgna A, Yang Y (2011) J Catal 283:34CrossRefGoogle Scholar
  29. 29.
    Kato S, Ammann M, Huthwelker T, Paun C, Lampimäki M, Lee M-T, Rothensteiner M, van Bokhoven JA (2015) Phys Chem Chem Phys 17:5078CrossRefGoogle Scholar
  30. 30.
    Torres JQ, Giraudon J-M, Lamonier J-F (2011) Catal Today 176:277CrossRefGoogle Scholar
  31. 31.
    An K, Alayoglu S, Musselwhite N, Plamthottam S, Melaet G, Lindeman AE, Somorjai GA (2013) J Am Chem Soc 135:16689CrossRefGoogle Scholar
  32. 32.
    Liu H-H, Wang Y, Jia A-P, Wang S-Y, Luo M-F, Lu J-Q (2014) Appl Surf Sci 314:725CrossRefGoogle Scholar
  33. 33.
    Bera P, Gayen A, Hegde M, Lalla N, Spadaro L, Frusteri F, Arena F (2003) J Phys Chem B 107:6122CrossRefGoogle Scholar
  34. 34.
    Lee H, Nedrygailov II, Lee SW, Park JY (2018) Top Catal 61:915CrossRefGoogle Scholar
  35. 35.
    Lee H, Lim J, Lee C, Back S, An K, Shin JW, Ryoo R, Jung Y, Park JY (2018) Nat Commun 9:2235CrossRefGoogle Scholar
  36. 36.
    Williams W, Marks C, Schmidt L (1992) J Phys Chem 96:5922CrossRefGoogle Scholar
  37. 37.
    Johnson GR, Bell AT (2016) J Catal 338:250CrossRefGoogle Scholar
  38. 38.
    Hervier A, Baker LR, Komvopoulos K, Somorjai GA (2011) J Phys Chem C 115:22960CrossRefGoogle Scholar
  39. 39.
    Phillips KR, Jensen SC, Baron M, Li S-C, Friend CM (2013) J Am Chem Soc 135:574CrossRefGoogle Scholar
  40. 40.
    Wittstock A, Zielasek V, Biener J, Friend C, Bäumer M (2010) Science 327:319CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Nanomaterials and Chemical ReactionsInstitute for Basic Science (IBS)DaejeonRepublic of Korea
  2. 2.Graduate School of EEWS, Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
  3. 3.National Creative Research Initiative Center for Nanospace-confined Chemical ReactionsGyeongbukRepublic of Korea
  4. 4.Department of ChemistryPohang University of Science and Technology (POSTECH)GyeongbukRepublic of Korea
  5. 5.Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea

Personalised recommendations