Advertisement

Catalysis Letters

, Volume 149, Issue 1, pp 49–60 | Cite as

Synthesis and Application of Fe-Doped WO3 Nanoparticles for Photocatalytic Degradation of Methylparaben Using Visible–Light Radiation and H2O2

  • Eric Mwangi Ngigi
  • Philiswa Nosizo Nomngongo
  • Jane Catherine NgilaEmail author
Article
  • 27 Downloads

Abstract

Synthesis of WO3 and Fe-doped WO3 nanoparticles is done by use of Microwave irradiation technique. X-ray powder diffraction confirmed the formation of a monoclinic crystalline structure. The as-prepared samples are characterised by transmission electron microscope, Braunuer, Emmett and Teller, Raman spectroscopy, photoluminescence, X-ray photoelectron spectroscopy and ultraviolet diffuse reflectance spectroscopy. Confirmation of the morphology of the nanostructures showed ovoid-like form. The photocatalytic activity of WO3 and nominal percentage of Fe-doped WO3 (3, 5 and 10 wt%) are evaluated for the degradation of methylparaben (MeP) in aqueous solution after being irradiated with visible light. The results show that 5 wt% Fe–WO3 is the best dopant in the photodegradation of MeP at 50.8% with H2O2. A chemometric model analysis is applied to estimate both individual and interaction factors that included pH, contact time, hydrogen peroxide (H2O2) concentration and catalyst dosage. The optimal conditions at pH 3, 10 mg, 5 wt% Fe–WO3 and 120 min are achieved.

Graphical Abstract

Keywords

Methylparaben Microwave Nanostructures Photodegradation Dopant 

Notes

Acknowledgements

The authors wish to acknowledge the Water Research Commission (Grant No. K5/2563) and the Department of Applied Chemistry at the University of Johannesburg for partial funding. The authors also thank the Spectra Analytical Facility, the University of Johannesburg for the availability of XRD, SEM, TEM analysis and Department of Physics for XPS analysis.

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

References

  1. 1.
    Jiang J-Q, Zhou Z, Sharma VK (2013) Occurrence, transportation, monitoring and treatment of emerging micro-pollutants in waste water—a review from global views. Microchem J 110:292–300CrossRefGoogle Scholar
  2. 2.
    Carlos L, Mártire DO, Gonzalez MC, Gomis J, Bernabeu A, Amat AM, Arques A (2012) Photochemical fate of a mixture of emerging pollutants in the presence of humic substances. Water Res 46(15):4732–4740CrossRefGoogle Scholar
  3. 3.
    Muñoz I, José Gómez M, Molina-Díaz A, Huijbregts MAJ, Fernández-Alba AR, García-Calvo E (2008) Ranking potential impacts of priority and emerging pollutants in urban wastewater through life cycle impact assessment. Chemosphere 74(1):37–44CrossRefGoogle Scholar
  4. 4.
    Vulliet E, Cren-Olivé C (2011) Screening of pharmaceuticals and hormones at the regional scale, in surface and groundwaters intended to human consumption. Environ Pollut 159(10):2929–2934CrossRefGoogle Scholar
  5. 5.
    Alcudia-León MC, Lucena R, Cárdenas S, Valcárcel M (2013) Determination of parabens in waters by magnetically confined hydrophobic nanoparticle microextraction coupled to gas chromatography/mass spectrometry. Microchem J 110:643–648CrossRefGoogle Scholar
  6. 6.
    Sasi S, Rayaroth MP, Devadasan D, Aravind UK, Aravinda kumar CT (2015) Influence of inorganic ions and selected emerging contaminants on the degradation of methylparaben: a sonochemical approach. J Hazard Mater 300:202–209CrossRefGoogle Scholar
  7. 7.
    Lam S-M, Sin J-C, Zuhairi Abdullah A, Rahman Mohamed A (2013) Green hydrothermal synthesis of ZnO nanotubes for photocatalytic degradation of methylparaben. Mater Lett 93:423–426CrossRefGoogle Scholar
  8. 8.
    Trenholm RA, Vanderford BJ, Drewes JE, Snyder SA (2008) Determination of household chemicals using gas chromatography and liquid chromatography with tandem mass spectrometry. J Chromatogr A 1190(1–2):253–262CrossRefGoogle Scholar
  9. 9.
    Yu Y, Huang Q, Wang Z, Zhang K, Tang C, Cui J, Feng J, Peng X (2011) Occurrence and behavior of pharmaceuticals, steroid hormones, and endocrine-disrupting personal care products in wastewater and the recipient river water of the Pearl River Delta, South China. J Environ Monit 13(4):871–878CrossRefGoogle Scholar
  10. 10.
    Andersen HR, Lundsbye M, Wedel HV, Eriksson E, Ledin A (2007) Estrogenic personal care products in a greywater reuse system. Water Sci Technol 56(12):45–49CrossRefGoogle Scholar
  11. 11.
    Yamamoto H, Watanabe M, Hirata Y, Nakamura Y, Nakamura Y, Kitani C, Sekizawa J, Uchida M, Nakamura H, Kagami Y, Koshio M, Hirai N, Tatarazako N (2007) Preliminary ecological risk assessment of butylparaben and benzylparaben-1. Removal efficiency in wastewater treatment, acute/chronic toxicity for aquatic organisms, and effects on medaka gene expression. Environ Sci 14(Suppl):73–87Google Scholar
  12. 12.
    Blanco E, Casais MdC, Mejuto MdC, Cela R (2009) Combination of off-line solid-phase extraction and on-column sample stacking for sensitive determination of parabens and p-hydroxybenzoic acid in waters by non-aqueous capillary electrophoresis. Anal Chim Acta 647(1):104–111CrossRefGoogle Scholar
  13. 13.
    Haman C, Dauchy X, Rosin C, Munoz J-F (2015) Occurrence, fate and behavior of parabens in aquatic environments: a review. Water Res 68:1–11CrossRefGoogle Scholar
  14. 14.
    Lee H-B, Peart TE, Svoboda ML (2005) Determination of endocrine-disrupting phenols, acidic pharmaceuticals, and personal-care products in sewage by solid-phase extraction and gas chromatography–mass spectrometry. J Chromatogr A 1094(1–2):122–129CrossRefGoogle Scholar
  15. 15.
    Driouich R, Takayanagi T, Oshima M, Motomizu S (2000) Separation and determination of haloperidol, parabens and some of their degradation products by micellar electrokinetic chromatography. J Chromatogr A 903(1–2):271–278CrossRefGoogle Scholar
  16. 16.
    Huang H-Y, Lai Y-C, Chiu C-W, Yeh J-M (2003) Comparing micellar electrokinetic chromatography and microemulsion electrokinetic chromatography for the analysis of preservatives in pharmaceutical and cosmetic products. J Chromatogr A 993(1–2):153–164CrossRefGoogle Scholar
  17. 17.
    Dolzan MD, Spudeit DA, Azevedo MS, Costa ACO, de Oliveira MAL, Micke GA (2013) A fast method for simultaneous analysis of methyl, ethyl, propyl and butylparaben in cosmetics and pharmaceutical formulations using capillary zone electrophoresis with UV detection. Anal Methods 5(21):6023–6029CrossRefGoogle Scholar
  18. 18.
    Márquez-Sillero I, Aguilera-Herrador E, Cárdenas S, Valcárcel M (2010) Determination of parabens in cosmetic products using multi-walled carbon nanotubes as solid phase extraction sorbent and corona-charged aerosol detection system. J Chromatogr A 1217(1):1–6CrossRefGoogle Scholar
  19. 19.
    Noorashikin MS, Mohamad S, Abas MR (2014) Extraction and determination of parabens in water samples using an aqueous two-phase system of ionic liquid and salts with beta-cyclodextrin as the modifier coupled with high performance liquid chromatography. Anal Methods 6(2):419–425CrossRefGoogle Scholar
  20. 20.
    Zgola-Grzeskowiak A, Werner J, Jeszka-Skowron M, Czarczynska-Goslinska B (2016) Determination of parabens in cosmetic products using high performance liquid chromatography with fluorescence detection. Anal Methods 8(19):3903–3909CrossRefGoogle Scholar
  21. 21.
    Gonzalez-Hernandez P, Pino V, Ayala JH, Afonso AM (2015) A simplified vortex-assisted emulsification microextraction method for determining personal care products in environmental water samples by ultra-high-performance liquid chromatography. Anal Methods 7(5):1825–1833CrossRefGoogle Scholar
  22. 22.
    Cao S, Liu Z, Zhang L, Xi C, Li X, Wang G, Yuan R, Mu Z (2013) Development of an HPLC-MS/MS method for the simultaneous analysis of six kinds of parabens in food. Anal Methods 5(4):1016–1023CrossRefGoogle Scholar
  23. 23.
    Lu L, Xiong W, Li X, Lv S, Tang X, Chen M, Zou Z, Lin Z, Qiu B, Chen G (2014) Determination of the migration of eight parabens from antibacterial plastic packaging by liquid chromatography-electrospray ionization-tandem mass spectrometry. Anal Methods 6(7):2096–2101CrossRefGoogle Scholar
  24. 24.
    Shanmugam G, Ramaswamy BR, Radhakrishnan V, Tao H (2010) GC–MS method for the determination of paraben preservatives in the human breast cancerous tissue. Microchem J 96(2):391–396CrossRefGoogle Scholar
  25. 25.
    Fan X, Kubwabo C, Rasmussen P, Jones-Otazo H (2010) Simultaneous quantitation of parabens, triclosan, and methyl triclosan in indoor house dust using solid phase extraction and gas chromatography-mass spectrometry. J Environ Monit 12(10):1891–1897CrossRefGoogle Scholar
  26. 26.
    Che H, Liu C, Hu W, Hu H, Li J, Dou J, Shi W, Li C, Dong H (2018) NGQD active sites as effective collectors of charge carriers for improving the photocatalytic performance of Z-scheme g-C3N4/Bi2WO6 heterojunctions. Catal Sci Tech 8(2):622–631CrossRefGoogle Scholar
  27. 27.
    Ye L, Su Y, Jin X, Xie H, Zhang C (2014) Recent advances in BiOX (X = Cl, Br and I) photocatalysts: synthesis, modification, facet effects and mechanisms. Environ Sci 1(2):90–112Google Scholar
  28. 28.
    Dong S, Feng J, Fan M, Pi Y, Hu L, Han X, Liu M, Sun J, Sun J (2015) Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: a review. RSC Adv 5(19):14610–14630CrossRefGoogle Scholar
  29. 29.
    Wen Z, Wu W, Liu Z, Zhang H, Li J, Chen J (2013) Ultrahigh-efficiency photocatalysts based on mesoporous Pt-WO3 nanohybrids. Phys Chem Chem Phys 15(18):6773–6778CrossRefGoogle Scholar
  30. 30.
    Che H, Che G, Dong H, Hu W, Hu H, Liu C, Li C (2018) Fabrication of Z-scheme Bi3O4Cl/g-C3N4 2D/2D heterojunctions with enhanced interfacial charge separation and photocatalytic degradation various organic pollutants activity. Appl Surf Sci 455:705–716CrossRefGoogle Scholar
  31. 31.
    Adhikari S, Sarkar D (2014) Hydrothermal synthesis and electrochromism of WO3 nanocuboids. RSC Adv 4(39):20145–20153CrossRefGoogle Scholar
  32. 32.
    Qian J, Zhao Z, Shen Z, Zhang G, Peng Z, Fu X (2016) Oxide vacancies enhanced visible active photocatalytic W19O55 NMRs via strong adsorption. RSC Adv 6(10):8061–8069CrossRefGoogle Scholar
  33. 33.
    Epifani M, Arbiol J, Díaz R, Andreu T, Siciliano P, Morante JR (2010) Morphological and structural characterization of WO3 and Cr–WO3 thin films synthesized by sol–gel process. Thin Solid Films 518(16):4512–4514CrossRefGoogle Scholar
  34. 34.
    Martínez-de la Cruz A, Martínez DS, Cuéllar EL (2010) Synthesis and characterization of WO3 nanoparticles prepared by the precipitation method: evaluation of photocatalytic activity under vis-irradiation. Solid State Sci 12(1):88–94CrossRefGoogle Scholar
  35. 35.
    Huang R, Shen Y, Zhao L, Yan M (2012) Effect of hydrothermal temperature on structure and photochromic properties of WO3 powder. Adv Powder Technol 23(2):211–214CrossRefGoogle Scholar
  36. 36.
    Chiang TH, Hsu C-C, Chen T-M, Yu B-S (2015) Synthesis and structural characterization of tungsten oxide particles by the glycothermal method. J Alloys Compd 648:297–306CrossRefGoogle Scholar
  37. 37.
    Adhikari SP, Dean H, Hood ZD, Peng R, More KL, Ivanov I, Wu Z, Lachgar A (2015) Visible-light-driven Bi2O3/WO3 composites with enhanced photocatalytic activity. RSC Adv 5(111):91094–91102CrossRefGoogle Scholar
  38. 38.
    Wang C, Zhang X, Yuan B, Wang Y, Sun P, Wang D, Wei Y, Liu Y (2014) Multi-heterojunction photocatalysts based on WO3 nanorods: Structural design and optimization for enhanced photocatalytic activity under visible light. Chem Eng J 237:29–37CrossRefGoogle Scholar
  39. 39.
    Ahmed F, Kumar S, Arshi N, Anwar MS, Heun Koo B (2012) Morphological evolution between nanorods to nanosheets and room temperature ferromagnetism of Fe-doped ZnO nanostructures. CrystEngComm 14(11):4016–4026CrossRefGoogle Scholar
  40. 40.
    Ahmed Y, Yaakob Z, Akhtar P (2016) Correction: degradation and mineralization of methylene blue using a heterogeneous photo-Fenton catalyst under visible and solar light irradiation. Catal Sci Tech 6(4):1233–1233CrossRefGoogle Scholar
  41. 41.
    Nidheesh PV (2015) Heterogeneous Fenton catalysts for the abatement of organic pollutants from aqueous solution: a review. RSC Adv 5(51):40552–40577CrossRefGoogle Scholar
  42. 42.
    Yehia FZ, Eshaq G, Rabie AM, Mady AH, ElMetwally AE (2015) Phenol degradation by advanced Fenton process in combination with ultrasonic irradiation. Egypt J Pet 24(1):13–18CrossRefGoogle Scholar
  43. 43.
    Ayodele OB, Lim JK, Hameed BH (2012) Degradation of phenol in photo-Fenton process by phosphoric acid modified kaolin supported ferric-oxalate catalyst: optimization and kinetic modeling. Chem Eng J 197:181–192CrossRefGoogle Scholar
  44. 44.
    Segura Y, Molina R, Martínez F, Melero JA (2009) Integrated heterogeneous sono–photo Fenton processes for the degradation of phenolic aqueous solutions. Ultrason Sonochem 16(3):417–424CrossRefGoogle Scholar
  45. 45.
    Zeng Z, Zou H, Li X, Arowo M, Sun B, Chen J, Chu G, Shao L (2013) Degradation of phenol by ozone in the presence of Fenton reagent in a rotating packed bed. Chem Eng J 229:404–411CrossRefGoogle Scholar
  46. 46.
    Saleh R, Djaja NF (2014) UV light photocatalytic degradation of organic dyes with Fe-doped ZnO nanoparticles. Superlattices Microstruct 74:217–233CrossRefGoogle Scholar
  47. 47.
    Yue C, Zhu X, Rigutto M, Hensen E (2015) Acid catalytic properties of reduced tungsten and niobium-tungsten oxides. Appl Catal B 163:370–381CrossRefGoogle Scholar
  48. 48.
    Sayed Abhudhahir MH, Kandasamy J (2015) Synthesis and characterization of manganese doped tungsten oxide by microwave irradiation method. Mater Sci Semicond Process 40:695–700CrossRefGoogle Scholar
  49. 49.
    Santhi K, Rani C, Dhilip Kumar R, Karuppuchamy S (2015) Synthesis of nanoporous Zn-WO3 by microwave irradiation method for photocatalytic applications. J Mater Sci Mater Electron 26(12):10068–10074CrossRefGoogle Scholar
  50. 50.
    Beji N, Souli M, Ajili M, Azzaza S, Alleg S, Turki NK (2015) Effect of iron doping on structural, optical and electrical properties of sprayed In2O3 thin films. Superlattices Microstruct 81:114–128CrossRefGoogle Scholar
  51. 51.
    Silambarasan M, Saravanan S, Soga T (2015) Effect of Fe-doping on the structural, morphological and optical properties of ZnO nanoparticles synthesized by solution combustion process. Phys E 71:109–116CrossRefGoogle Scholar
  52. 52.
    Husain S, Alkhtaby LA, Giorgetti E, Zoppi A, Muniz Miranda M (2016) Investigation of the role of iron doping on the structural, optical and photoluminescence properties of sol–gel derived TiO2 nanoparticles. J Lumin 172:258–263CrossRefGoogle Scholar
  53. 53.
    Siriwong C, Wetchakun N, Inceesungvorn B, Channei D, Samerjai T, Phanichphant S (2012) Doped-metal oxide nanoparticles for use as photocatalysts. Prog Cryst Growth Charact Mater 58(2–3):145–163CrossRefGoogle Scholar
  54. 54.
    Steter JR, Rocha RS, Dionísio D, Lanza MRV, Motheo AJ (2014) Electrochemical oxidation route of methyl paraben on a boron-doped diamond anode. Electrochim Acta 117:127–133CrossRefGoogle Scholar
  55. 55.
    Dobrin D, Magureanu M, Bradu C, Mandache NB, Ionita P, Parvulescu VI (2014) Degradation of methylparaben in water by corona plasma coupled with ozonation. Environ Sci Pollut Res 21(21):12190–12197CrossRefGoogle Scholar
  56. 56.
    Sánchez-Martín J, Beltrán-Heredia J, Domínguez JR (2013) Advanced photochemical degradation of emerging pollutants: methylparaben. Water Air Soil Pollut 224(5):1483CrossRefGoogle Scholar
  57. 57.
    Doná G, Dagostin JLA, Takashina TA, de Castilhos F, Igarashi-Mafra L (2018) A comparative approach of methylparaben photocatalytic degradation assisted by UV-C, UV-A and vis radiations. Environ Technol 39(10):1238–1249CrossRefGoogle Scholar
  58. 58.
    Xiao X, Hu R, Tu S, Zheng C, Zhong H, Zuo X, Nan J (2015) One-pot synthesis of micro/nano structured β-Bi2O3 with tunable morphology for highly efficient photocatalytic degradation of methylparaben under visible-light irradiation. RSC Adv 5(48):38373–38381CrossRefGoogle Scholar
  59. 59.
    Kumar A, Shalini, Sharma G, Naushad M, Kumar A, Kalia S, Guo C, Mola GT (2017) Facile hetero-assembly of superparamagnetic Fe3O/BiVO4 stacked on biochar for solar photo-degradation of methyl paraben and pesticide removal from soil. J Photochem Photobiol A 337:118–131CrossRefGoogle Scholar
  60. 60.
    Song H, Li Y, Lou Z, Xiao M, Hu L, Ye Z, Zhu L (2015) Synthesis of Fe-doped WO3 nanostructures with high visible-light-driven photocatalytic activities. Appl Catal B 166–167:112–120CrossRefGoogle Scholar
  61. 61.
    Zhang Z, haq M, Wen Z, Ye Z, Zhu L (2018) Ultrasensitive ppb-level NO2 gas sensor based on WO3 hollow nanosphers doped with Fe. Appl Surf Sci 434:891–897CrossRefGoogle Scholar
  62. 62.
    Hernandez-Uresti DB, Sánchez-Martínez D, Martínez-de la Cruz A, Sepúlveda-Guzmán S, Torres-Martínez LM (2014) Characterization and photocatalytic properties of hexagonal and monoclinic WO3 prepared via microwave-assisted hydrothermal synthesis. Ceram Int 40(3):4767–4775CrossRefGoogle Scholar
  63. 63.
    Baserga A, Russo V, Di Fonzo F, Bailini A, Cattaneo D, Casari CS, Li Bassi A, Bottani CE (2007) Nanostructured tungsten oxide with controlled properties: synthesis and Raman characterization. Thin Solid Films 515(16):6465–6469CrossRefGoogle Scholar
  64. 64.
    Yang C, Zhu Q, Lei T, Li H, Xie C (2014) The coupled effect of oxygen vacancies and Pt on the photoelectric response of tungsten trioxide films. J Mater Chem C 2(44):9467–9477CrossRefGoogle Scholar
  65. 65.
    Yin L, Chen D, Feng M, Ge L, Yang D, Song Z, Fan B, Zhang R, Shao G (2015) Hierarchical Fe2O3@WO3 nanostructures with ultrahigh specific surface areas: microwave-assisted synthesis and enhanced H2S-sensing performance. RSC Adv 5(1):328–337CrossRefGoogle Scholar
  66. 66.
    Lin Y, Ferronato C, Deng N, Wu F, Chovelon J-M (2009) Photocatalytic degradation of methylparaben by TiO2: multivariable experimental design and mechanism. Appl Catal B 88(1–2):32–41CrossRefGoogle Scholar
  67. 67.
    Yuan W, Zhang C, Wei H, Wang Q, Li K (2017) In situ synthesis and immobilization of a Cu(II)–pyridyl complex on silica microspheres as a novel Fenton-like catalyst for RhB degradation at near-neutral pH. RSC Adv 7(37):22825–22835CrossRefGoogle Scholar
  68. 68.
    Kumar A, Sharma G, Naushad M, Kumar A, Kalia S, Guo C, Mola GT (2017) Facile hetero-assembly of superparamagnetic Fe3O4/BiVO4 stacked on biochar for solar photo-degradation of methyl paraben and pesticide removal from soil. J Photochem Photobiol A 337:118–131CrossRefGoogle Scholar
  69. 69.
    Ahmed Y, Yaakob Z, Akhtar P (2016) Degradation and mineralization of methylene blue using a heterogeneous photo-Fenton catalyst under visible and solar light irradiation. Catal Sci Tech 6(4):1222–1232CrossRefGoogle Scholar
  70. 70.
    Anik M, Cansizoglu T (2006) Dissolution kinetics of WO3 in acidic solutions. J Appl Electrochem 36(5):603–608CrossRefGoogle Scholar
  71. 71.
    Velegraki T, Hapeshi E, Fatta-Kassinos D, Poulios I (2015) Solar-induced heterogeneous photocatalytic degradation of methyl-paraben. Appl Catal B 178:2–11CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Eric Mwangi Ngigi
    • 1
  • Philiswa Nosizo Nomngongo
    • 1
  • Jane Catherine Ngila
    • 1
    Email author
  1. 1.Department of Applied ChemistryUniversity of JohannesburgJohannesburgSouth Africa

Personalised recommendations