Advertisement

Catalysis Letters

, Volume 149, Issue 1, pp 7–18 | Cite as

LiFePO4/Carbon/Reduced Graphene Oxide Nanostructured Composite as a High Capacity and Fast Rate Cathode Material for Rechargeable Lithium Ion Battery

  • Mikael MollazadehEmail author
  • Biuck HabibiEmail author
Article
  • 43 Downloads

Abstract

In this study, LiFePO4-carbon (LFP-C) and LFP-C/reduced graphene oxide (rGO) nanocomposites were prepared by ultrasonic spray pyrolysis technique in different calcination conditions to be used as the cathode-active materials for lithium ion battery (LIB). The structure, morphology and composition of the obtained materials were analyzed by X-ray diffraction (XRD), scanning electron microscope (SEM), high-resolution transmission electron microscopy (HR-TEM) and energy-dispersive X-ray spectroscopy (EDX). The XRD results reveal that the olivine pure phase was obtained after calcination of the LFP-C. The SEM images of the prepared materials exhibit the spherical morphology with nanometer size and also change in the morphology by applying the calcination step. The electrochemical performances of cathode-active materials were investigated by charge–discharge test, electrochemical impedance spectroscopy and cyclic voltammetry. The obtained results for LFP-C show that the electrochemical performance was improved by adding carbon precursor and calcining step; in the optimum calcination conditions; 700 °C for 3 h, the LFP-C shows good results in terms of electrochemical performance in comparison with LFP alone. The LFP-C/rGO nanocomposite exhibits the best electrochemical performance however: highest rechargeable capacity and cycle stability; discharge capacity (168 mAh/g at 0.1 C and 123.5 mAh/g at 10 C) and capacity retention of 100% after 50 cycles with maximum reversibility and lithium ion (Li+) diffusion coefficient.

Graphical Abstract

Schematic representation of preparation of the cathode-active materials.

Keywords

LiFePO4 Carbon precursor Calcination Olivine structure Reduced graphene oxide Nanocomposite Lithium ion battery Ultrasonic spray pyrolysis 

Notes

Acknowledgements

The authors would like to appreciate the University of Azarbaijan Shahid Madani University for providing facilities and financial support.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10562_2018_2589_MOESM1_ESM.doc (238 kb)
Supplementary material 1 (DOC 237 KB)

References

  1. 1.
    Armand M, Tarascon J-M (2008) Nature 451:652CrossRefGoogle Scholar
  2. 2.
    Wong Y, Chan C (2012) Vehicle energy storage: batteries. In: Meyers RA (ed) Encyclopedia of sustainability science and technology, Springer, New York, pp. 11502–11522CrossRefGoogle Scholar
  3. 3.
    Yang Z, Zhang J, Kintner-Meyer MC et al (2011) Chem Rev 111:3577CrossRefGoogle Scholar
  4. 4.
    Ravet N, Chouinard Y, Magnan J et al (2001) J Power Sources 97:503CrossRefGoogle Scholar
  5. 5.
    Yang K, Deng Z, Suo J (2012) J Solid State Electrochem 16:2805CrossRefGoogle Scholar
  6. 6.
    Huang H, Yin S-C, Nazar LS (2001) Electrochem Solid-State Lett 4:A170CrossRefGoogle Scholar
  7. 7.
    Croce F, d’Epifanio A, Hassoun J et al (2002) Electrochem Solid-State Lett 5:A47CrossRefGoogle Scholar
  8. 8.
    Chung S-Y, Bloking JT, Chiang Y-M (2002) Nat Mater 1:123CrossRefGoogle Scholar
  9. 9.
    Luo S, Tang Z, Lu JZ et al (2008) Ceram Int 34:1349CrossRefGoogle Scholar
  10. 10.
    Konarova M, Taniguchi I (2010) J Power Sources 195:3661CrossRefGoogle Scholar
  11. 11.
    Kwon SJ, Kim CW, Jeong WT et al (2004) J Power Sources 137:93CrossRefGoogle Scholar
  12. 12.
    Li Y, Wan C, Wu Y et al (2000) J Power Sources 85:294CrossRefGoogle Scholar
  13. 13.
    Park S-H, Oh SW, Sun Y-K (2005) J Power Sources 146:622CrossRefGoogle Scholar
  14. 14.
    Park S-H, Oh S-W, Myung S-T et al (2005) Solid State Ion 176:481CrossRefGoogle Scholar
  15. 15.
    Kang H-C, Jun D-K, Jin B et al (2008) J Power Sources 179:340CrossRefGoogle Scholar
  16. 16.
    Choi D, Kumta PN (2007) J Power Sources 163:1064CrossRefGoogle Scholar
  17. 17.
    Lee S-B, Cho S, Cho S et al (2008) Electrochem Commun 10:1219CrossRefGoogle Scholar
  18. 18.
    Jin EM, Jin B, Jun D-K et al (2008) J Power Sources 178:801CrossRefGoogle Scholar
  19. 19.
    Kim D, Im J, Kang J et al (2007) J Nanosci Nanotechnol 7:3949Google Scholar
  20. 20.
    Arnold G, Garche J, Hemmer R et al (2003) J Power Sources 119:247CrossRefGoogle Scholar
  21. 21.
    Geim AK, Novoselov KS (2007) Nat Mater 6:183CrossRefGoogle Scholar
  22. 22.
    Zhang LL, Zhou R, Zhao X (2010) J Mater Chem 20:5983CrossRefGoogle Scholar
  23. 23.
    Su C, Bu X, Xu L et al (2012) Electrochim Acta 64:190CrossRefGoogle Scholar
  24. 24.
    Wang L, Wang H, Liu Z et al (2010) Solid State Ion 181:1685CrossRefGoogle Scholar
  25. 25.
    Zhou X, Wang F, Zhu Y et al (2011) J Mater Chem 21:3353CrossRefGoogle Scholar
  26. 26.
    Lu L-M, Qiu X-L, Zhang X-B et al (2013) Biosens Bioelectron 45:102CrossRefGoogle Scholar
  27. 27.
    Guo Y, Guo S, Ren J et al (2010) Acs Nano 4:4001CrossRefGoogle Scholar
  28. 28.
    Kovtyukhova NI, Ollivier PJ, Martin BR et al (1999) Chem Mater 11:771CrossRefGoogle Scholar
  29. 29.
    Kodera T, Bi DY, Ogawa D et al (2011) Key Eng Mater 485:107–110CrossRefGoogle Scholar
  30. 30.
    Yang M-R, Teng T-H, Wu S-H (2006) J Power Sources 159:307CrossRefGoogle Scholar
  31. 31.
    Wang X, Cheng K, Zhang J et al (2013) Adv Powder Tech 24:593CrossRefGoogle Scholar
  32. 32.
    Akao S, Yamada M, Kodera T et al (2010) Int J Chem Eng.  https://doi.org/10.1155/2010/175914 Google Scholar
  33. 33.
    Gabrisch H, Wilcox JD, Doeff MM (2006) Electrochem Solid-State Lett 9:A360CrossRefGoogle Scholar
  34. 34.
    Bang J, Didenko Y, Helmich R et al (2012) Aldrich Mater Matter 7:15Google Scholar
  35. 35.
    Wang J, Sun X (2012) Energ Environ Sci 5:5163CrossRefGoogle Scholar
  36. 36.
    Zhang Y, Feng H, Wu X et al (2009) Electrochim Acta 54:3206CrossRefGoogle Scholar
  37. 37.
    Oh SW, Myung ST, Oh SM et al (2010) Adv Mater 22:4842CrossRefGoogle Scholar
  38. 38.
    Yang J, Wang J, Wang D et al (2012) J Power Sources 208:340CrossRefGoogle Scholar
  39. 39.
    Kim J-K, Choi J-W, Chauhan GS et al (2008) Electrochim Acta 53:8258CrossRefGoogle Scholar
  40. 40.
    Konarova M, Taniguchi I (2008) Mater Res Bull 43:3305CrossRefGoogle Scholar
  41. 41.
    Liao X-Z, Ma Z-F, He Y-S et al (2005) J Electrochem Soc 152:A1969CrossRefGoogle Scholar
  42. 42.
    Wang Y, Wang J, Yang J et al (2006) Adv Func Mater 16:2135CrossRefGoogle Scholar
  43. 43.
    Hanai K, Maruyama T, Imanishi N et al (2008) J Power Sources 178:789CrossRefGoogle Scholar
  44. 44.
    Wang Y, Feng Z-S, Chen J-J et al (2012) Mater Lett 71:54CrossRefGoogle Scholar
  45. 45.
    Scrosati B, Abraham K, Schalkwijk WA et al (2013) Lithium batteries: advanced technologies and applications. Wiley, HobokenCrossRefGoogle Scholar
  46. 46.
    Kang F-Y, Ma J, Li B-H (2011) New Carbon Mater 26:161CrossRefGoogle Scholar
  47. 47.
    Morgan D, Van der Ven A, Ceder G (2004) Electrochem Solid-State Lett 7:A30CrossRefGoogle Scholar
  48. 48.
    Heinze J (1984) Angew Chem Int Ed 23:831CrossRefGoogle Scholar
  49. 49.
    Jin B, Jin EM, Park K-H et al (2008) Electrochem Commun 10:1537CrossRefGoogle Scholar
  50. 50.
    Liu J, Manthiram A (2009) Chem Mater 21:1695CrossRefGoogle Scholar
  51. 51.
    Huang Y-H, Goodenough JB (2008) Chem Mater 20:7237CrossRefGoogle Scholar
  52. 52.
    Dominko R, Bele M, Gaberscek M et al (2005) J Electrochem Soc 152:A607CrossRefGoogle Scholar
  53. 53.
    Kang B, Ceder G (2009) Nature 458:190CrossRefGoogle Scholar
  54. 54.
    Murugan AV, Muraliganth T, Manthiram A (2008) Electrochem Commun 10:903CrossRefGoogle Scholar
  55. 55.
    Liu J, Kunz M, Chen K et al (2010) J Phys Chem Lett 1:2120CrossRefGoogle Scholar
  56. 56.
    Liu J, Conry TE, Song X et al (2011) Energy Environ Sci 4:885CrossRefGoogle Scholar
  57. 57.
    Talebi-Esfandarani M (2013) Synthesis, Characterization and Modification of LifeP04 by Doping with Platinum and Palladium for Lithium-Ion Batteries (Thèse de doctorat, École Polytechnique de Montréal)Google Scholar
  58. 58.
    Yu S, Dan S, Luo G et al (2012) J Solid State Electrochem 16:1675CrossRefGoogle Scholar
  59. 59.
    Molenda J, Ojczyk W, Marzec J (2007) J Power Sources 174:689CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Electroanalytical Chemistry Laboratory, Department of Chemistry, Faculty of SciencesAzarbaijan Shahid Madani UniversityTabrizIran

Personalised recommendations