Advertisement

Catalysis Letters

, Volume 149, Issue 1, pp 25–33 | Cite as

Nickel Bipyridine (Ni(bpy)3Cl2) Complex Used as Molecular Catalyst for Photocatalytic CO2 Reduction

  • Jinliang LinEmail author
  • Biao Qin
  • Zhenxing Fang
Article
  • 86 Downloads

Abstract

A facile heterogeneous photocatalyst system that consists of a nickel complex and cadmium sulfide (CdS), which act as the catalyst and light antenna, respectively, was developed to the efficiency photocatalytic activation and conversion of CO2. Ni(bpy)3Cl2 was firstly found to be an active material for photocatalytic CO2 reduction. Besides, promoting the photo-generated electrons transfer from CdS to CO2 through such nickel complex further enhanced the catalytic activity. 5.2 µmol of CO has been obtained in acetonitrile solution containing Ni(bpy)3Cl2 under 2 h visible-light irradiation, which is approximately sixfold more than that system without Ni(bpy)3Cl2 complex. The different amount of Ni(bpy)3Cl2 used reveals the relationship of active center and photocatalytic performance. The use of a suitable amount of Ni(bpy)3Cl2 resulting in an apparent quantum yield of 1.68% at 420 nm. Electrochemical measurement and photochemical observation suggest a possible mechanistic detail of charge carrier transfer and information of key intermediates during CO2 reduction, which broadens the perspective of reaction mechanism.

Graphical Abstract

Keywords

Ni(bpy)3Cl2 Molecular catalyst Photocatalysis CO2 reduction 

Notes

Acknowledgements

This work was sponsored by Natural Science Foundation of Guizhou Province ([2017]1198). This work was also supported by projects of “Physical Breeding First-class Subjects” ([2018]34) and “Chemical First-class Subjects” ([2018]40).

Compliance with Ethical Standards

Conflict of interest

The authors declare no competing financial interests.

Supplementary material

10562_2018_2586_MOESM1_ESM.doc (1.4 mb)
Supplementary material 1 (DOC 1433 KB)

References

  1. 1.
    Yasuo I (2013) Coord Chem Rev 257:171Google Scholar
  2. 2.
    He M, Sun Y, Han B (2013) Angew Chem Int Ed 52:9620Google Scholar
  3. 3.
    Xie Y, Zhang Z, Jiang T. He J, Han B, Wu T, Ding K (2007) Angew Chem Int Ed 119:7393Google Scholar
  4. 4.
    Gao P, Li S, Bu X, Wang H, Zhong L, Qiu M, Yang C, Cai J, Wei W, Sun Y (2017) Nat Chem 9:1019Google Scholar
  5. 5.
    Lin J, Ding Z, Hou Y, Wang X (2013) Sci Rep 3:1056Google Scholar
  6. 6.
    Halmann M (1978) Nature 275:115Google Scholar
  7. 7.
    Wen F, Li C (2013) Acc Chem Res 46:2355Google Scholar
  8. 8.
    Ran J, Jaroniec M, Qiao S (2018) Adv Mater 30:1704649Google Scholar
  9. 9.
    Avelino C, Hermenegildo G (2003) Chem Rev 103:4307Google Scholar
  10. 10.
    Etsuko F, Furenlid LR, Renner MW (1997) J Am Chem Soc 119:4549Google Scholar
  11. 11.
    Schneider J, Jia H, Muckerman JT, Fujita E (2012) Chem Soc Rev 41:2036Google Scholar
  12. 12.
    Appel AM, Bercaw JE, Bocarsly AB, Dobbek H, DuBois DL, Dupuis M, Ferry JG, Fujita E, Hille R, Kenis PJA, Kerfeld CA, Morris RH, Peden CHF, Portis AR, Ragsdale SW, Rauchfuss TB, Reek JNH, Seefeldt LC, Thauer RK, Waldrop GL (2013) Chem Rev 113:6621Google Scholar
  13. 13.
    Rao H, Schmidt LC, Bonin J, Robert M (2017) Nature 548:74Google Scholar
  14. 14.
    Wang S, Yao W, Lin J, Ding Z, Wang X (2014) Angew Chem Int Ed 53:1034Google Scholar
  15. 15.
    Smieja JM, Sampson MD, Grice KA, Benson EE, Froehlich JD, Kubiak CP (2013) Inorg Chem 52:2484Google Scholar
  16. 16.
    Alsabeh PG, Rosas A, Barsch E, Henrik J, Ludwig R, Beller M (2016) Cat Sci Technol 6:3623Google Scholar
  17. 17.
    Rosen BM, Quasdorf KW, Wilson DA, Zhang N, Resmerita AM, Garg NK, Percec V (2011) Chem Rev 111:1346Google Scholar
  18. 18.
    Craig CA, Spreer LO, Otvos JW, Calvin M (1990) J Phys Chem 94:7957Google Scholar
  19. 19.
    Mochizuki K, Manaka S, Takeda I, Kondo T (1996) Inorg Chem 35:5132Google Scholar
  20. 20.
    Thoi VS, Kornienk N, Margarit C, Yang P, Chang C (2013) J Am Chem Soc 135:14413Google Scholar
  21. 21.
    Hong D, Tsukakoshi Y, Kotani H, Ishizuka T, Kojima T (2017) J Am Chem Soc 139:6538Google Scholar
  22. 22.
    Wiese S, Kilgore UJ, Ho MH, Raugei S, Dubois DL, Bullock RM (2013) ACS Catal 3:2527Google Scholar
  23. 23.
    Froehlich JD, Kubiak CP (2012) Inorg Chem 51:3932Google Scholar
  24. 24.
    Sakaki S (1992) J Am Chem Soc 114:2055Google Scholar
  25. 25.
    Cometto C, Kuriki R, Chen L, Maeda K, Lau TC, Ishitani O, Robert MA (2018) J Am Chem Soc 140:7437Google Scholar
  26. 26.
    Neri G, Forster M, Walsh JJ, Robertson CM, Whittles TJ, Farras P, Cowan AJ (2016) Chem Commun 52:14200Google Scholar
  27. 27.
    Muraoka K, Kumagai H, Eguchi M, Ishitani O, Maeda K (2016) Chem Commun 52:7886Google Scholar
  28. 28.
    Maeda K, Kuriki R, Ishitani O (2016) Chem Lett 45:182Google Scholar
  29. 29.
    Lee Y, Kim S, Kang JK, Cohen SM (2015) Chem Commun 51:5735Google Scholar
  30. 30.
    Fei H, Sampson MD, Lee Y, Kubiak CP, Cohen SM (2015) Inorg Chem 54:6821Google Scholar
  31. 31.
    Kuriki R, Ishitani O, Maeda K (2016) ACS Appl Mater Interfaces 8:6011Google Scholar
  32. 32.
    Windle CD, Pastor E, Reynal A, Whitwood AC, Vaynzof Y, Durrant JR, Perutz RN, Reisner E (2015) Chem Eur J 21:3746Google Scholar
  33. 33.
    Maeda K, Kuriki R, Zhang M, Wang X, Ishitani O (2014) J Mater Chem A 2:15146Google Scholar
  34. 34.
    Barton EE, Rampulla DM, Bocarsly AB (2008) J Am Chem Soc 130:6342Google Scholar
  35. 35.
    Kimura E, Wada S, Shionoya M, Okazaki Y (1994) Inorg Chem 33:770Google Scholar
  36. 36.
    Sato S, Morikawa T, Saeki S, Kajino T, Motohiro T (2010) Angew Chem Int Ed 49:5101Google Scholar
  37. 37.
    Nakada A, Nakashima T, Sekizawa K, Maeda K, Ishitani O (2016) Chem Sci 7:4364Google Scholar
  38. 38.
    Kuriki R, Matsunaga H, Nakashima T, Wada K, Yamakata A, Ishitani O, Maeda K (2016) J Am Chem Soc 138:5159Google Scholar
  39. 39.
    Chai Z, Li Q, Xu D (2014) Rsc Adv 4:44991Google Scholar
  40. 40.
    Lin J, Hou Y, Zheng Y, Wang X (2015) Chem Asian J 9:2468Google Scholar
  41. 41.
    Kuriki R, Sekizawa K, Ishitani O, Maeda K (2015) Angew Chem Int ed 54:2406Google Scholar
  42. 42.
    Kuehnel MF, Orchard KL, Dalle KE (2017) J Am Chem Soc 139:7217Google Scholar
  43. 43.
    Wang S, Lin J, Wang X (2014) Phys Chem Chem Phys 16:14656Google Scholar
  44. 44.
    Yuan Y, Lu H, Tu J, Fang Y, Yu Z, Fan X, Zou Z (2015) Chem Phys Chem 16:2925Google Scholar
  45. 45.
    Ruiz-Pérez C, Luis PAL, Lloret F, Julve M (2002) Inorg Chim Acta 336:131Google Scholar
  46. 46.
    Fujita E, Brunschwig BS, Balzani V (eds); Wiley-VCH: Weinheim, Germany, 2001; Vol. 4, pp 88–126Google Scholar
  47. 47.
    Zhao W, Huang Y, Liu Y, Cao L, Zhang F, Guo Y, Zhang B (2016) Chem Eur J 22:15049Google Scholar
  48. 48.
    Wong KN. Colson SD (1984) J Mol Spectrosc 104:129Google Scholar
  49. 49.
    Al-Qudsi ZN, Abood HMA (2013) J Al-Nahrain University (Science) 16:46Google Scholar
  50. 50.
    Formosinho SJ, Arnaut LG (1994) J Photochem Photobio A 82:11Google Scholar
  51. 51.
    Fogeron T, Todorova JTK, Porcher J-P, Gomez-Mingot M, Chamoreau LM, Mellot-Draznieks C, Li Y, Fortecave M (2018) ACS Catal 8:2030Google Scholar
  52. 52.
    Benson EE, Kubiak CP, Sathrum AJ, Smieja JM (2009) Chem Soc Rev 40:89Google Scholar
  53. 53.
    Finlayson MF, Wheeler BL, Kakuta N, Park KH, Bard AJ, Campion A, Fox MAS, Webber E, White M (1985) J Phys Chem 89:5676Google Scholar
  54. 54.
    Sahoo D, Yoo C, Lee Y (2017) J Am Chem Soc 140:2179Google Scholar
  55. 55.
    Morris AJ, Meyer GJ, Fujita E (2010) Acc Chem Res 41:1983Google Scholar
  56. 56.
    Tong H, Umezawa N, Ye J, Ohno T (2011) Energy Environ Sci 4:1684Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical and EngineeringZunyi Normal UniversityZunyiPeople’s Republic of China
  2. 2.Department of PhysicsZunyi Normal UniversityZunyiPeople’s Republic of China

Personalised recommendations