Advertisement

Peptide Nanofiber Templated Zinc Oxide Nanostructures as Non-precious Metal Catalyzed N-Arylation of Amines, One-Pot Synthesis of ImidazoHeterocycles and Fused Quinazolines

  • Zahra Taherinia
  • Arash Ghorbani-Choghamarani
  • Maryam Hajjami
Article
  • 27 Downloads

Abstract

In the present study, peptide nanofiber was used to immobilize zinc oxide. This nanoparticle was prepared through self-assembly in an aqueous solution. The structural properties of the prepared catalyst were examined by a series of techniques, such as FT-IR, EDS, SEM, TEM, XRD, ICP-OES (inductively coupled plasma optical emission spectrometry), and ultraviolet–visible (UV–Vis) spectroscopy. TEM images showed the necklace model for peptide nanofiber decorated with zinc oxide. The versatility of the method was investigated by N-arylation using reaction of amines with hydroxybenzotriazole as a novel phenylating reagent, one-pot synthesis of imidazoheterocycles by a three-component reaction of 2-aminopyridine, aldehyde, terminal alkyne and preparation of tetracyclic quinazolinone ring by one-pot reaction of isatoic anhydride, amine, and ninhydrin. High yields, low cost of catalyst, environmental friendliness, efficient recovery and recyclability of catalyst are the most important features of this catalytic system.

Graphical Abstract

Keywords

Peptide nanofiber Hydroxybenzotriazole ZnO nanoparticles Tetracyclic quinazolinone Imidazo [1,2-a] pyridine 

Notes

Funding

This work was supported by Ilam University

Supplementary material

10562_2018_2580_MOESM1_ESM.docx (2.1 mb)
Supplementary material 1 (DOCX 2194 KB)

References

  1. 1.
    Hili R, Yudin AK (2006) Nat Chem Biol 2:284CrossRefGoogle Scholar
  2. 2.
    Ruiz-Castillo P, Buchwald SL (2016) Chem Rev 116:12564CrossRefGoogle Scholar
  3. 3.
    Kumar A, Bishnoi AK (2015) RSC Adv 5:20516CrossRefGoogle Scholar
  4. 4.
    Aubin Y, Fischmeister C, Thomas CM, Renaud JL (2010) Chem Soc Rev 39:4130CrossRefGoogle Scholar
  5. 5.
    Polprasert C, Liyanage LRJ (1996) Resour Conserv Recycl 16:213CrossRefGoogle Scholar
  6. 6.
    Deep A, Kaur Bhatia R, Kaur R, Kumar S, Kumar Jain U, Singh H, Kishore Deb P (2017) Curr Top Med Chem 17:238CrossRefGoogle Scholar
  7. 7.
    Starrett JE Jr, Montzka TA, Crosswell AR, Cavanagh RL (1998) J Med Chem 32:2204CrossRefGoogle Scholar
  8. 8.
    Chandra Mohan D, Nageswara Rao S, Adimurthy S (2013) J Org Chem 78:1266CrossRefGoogle Scholar
  9. 9.
    Reddy BS, Reddy PS, Reddy YJ, Yadav JS (2011) Tetrahedron Lett 52:5789CrossRefGoogle Scholar
  10. 10.
    Guo P, Huang S, Mo J, Chen X, Jiang H, Chen W, Zhan H (2017) Catal Commun 90:43CrossRefGoogle Scholar
  11. 11.
    Guchhait SK, Chandgude AL, Priyadarshani G (2012) J Org Chem 77:4438CrossRefGoogle Scholar
  12. 12.
    Chernyak N, Gevorgyan V (2010) Angew Chem Int Ed 49:2743–2746CrossRefGoogle Scholar
  13. 13.
  14. 14.
    Hisano T, Ichikawa M, Kito G, Nishi T (1972) Chem Pharm Bull 20:2575CrossRefGoogle Scholar
  15. 15.
    Murthy NV, Nikumbh SP, Kumar SP, Chiranjeevi Y, Rao LV, Raghunadh AA (2016) Synlett 27:2362CrossRefGoogle Scholar
  16. 16.
    Shen C, Man NY, Stewart S, Wu XF(2015) Org Biomol Chem 13:4422CrossRefGoogle Scholar
  17. 17.
    Yao J, Yao Y (2017) Int J Hydrog Energy 42:18560CrossRefGoogle Scholar
  18. 18.
    Ghorbani-Choghamarani A, Morad Pi, Tahmasbi B (2016) RSC Adv 6:56638CrossRefGoogle Scholar
  19. 19.
    Scott RW, Ye H, Henriquez RR, Crooks RM (2003) Chem Mater 15:3873CrossRefGoogle Scholar
  20. 20.
    Salavati H, Rasouli N (2011) Mater Res Bull 46:1853CrossRefGoogle Scholar
  21. 21.
    Gong T, Qin L, Zhang W, Wan H, Lu J, Feng H (2015) J Phys Chem C 119:11544CrossRefGoogle Scholar
  22. 22.
    Ghorbani-Choghamarani A, Taherinia Z (2017) Chin J Catal 38:469CrossRefGoogle Scholar
  23. 23.
    Eskandari S, Guerin T, Toth I, Stephenson RJ (2017) Adv Drug Deliv Rev 110:169CrossRefGoogle Scholar
  24. 24.
    Ren K, Wang Y, Sun T, Yue W, Zhang H (2017) Mater Sci Eng C 78:324CrossRefGoogle Scholar
  25. 25.
    Vasita R, Katti DS (2006) Int J Nanomed 1:15CrossRefGoogle Scholar
  26. 26.
    Wang W, Anderson CF, Wang Z, Wu W, Cui H, Liu CJ (2017) Chem Sci 8:3310CrossRefGoogle Scholar
  27. 27.
    Maity I, Manna MK, Rasale D, Das AK (2014) ChemPlusChem 79:413CrossRefGoogle Scholar
  28. 28.
    Wang C, Sun Y, Wang J, Xu H, Lu JR (2015) Chem Asian J 10:1953CrossRefGoogle Scholar
  29. 29.
    Acar H, Garifullin R, Aygun LE, Okyay AK, Guler MO (2013) J Mater Chem A 1:10979CrossRefGoogle Scholar
  30. 30.
    Khalily MA, Ustahuseyin O, Garifullin R, Genc R, Guler R (2012) Chem Commun 48:11358CrossRefGoogle Scholar
  31. 31.
    Kim S, Cho HJ, Lee N, Lee YS, Shin DS, Lee SM (2017) RSC Adv 7:33162CrossRefGoogle Scholar
  32. 32.
    Suresh J, Pradheesh G, Alexramani V, Sundrarajan M, Hong SI (2018) Adv Nat Sci 9:015008Google Scholar
  33. 33.
    Dhole SG, Dake SA, Prajapati TA, Helambe SN (2018) Proc Manuf 20:127Google Scholar
  34. 34.
    Chithra MJ, Sathya M, Pushpanathan K (2015) Acta Metall Sin (Engl Lett) 28:394CrossRefGoogle Scholar
  35. 35.
    Yuan Y, Thome I, Kim SH, Chen D, Beyer A, Bonnamour J, Bolm C (2010) Adv Synth Catal 352:2892CrossRefGoogle Scholar
  36. 36.
    Trofimov BA (1992) J Sulfur Chem 11:207Google Scholar
  37. 37.
    Mellado P, McIlwee HA, Badrossamay MR, Goss JA, Mahadevan L, Kit Parker K (2011) Appl Phys Lett 99:203107CrossRefGoogle Scholar
  38. 38.
    Padron S, Fuentes A, Caruntu D, Lozano K (2013) J Appl Phys 113:024318CrossRefGoogle Scholar
  39. 39.
    Golecki HM, Yuan H, Glavin C, Potter B, Badrossamay MR, Goss JA, Parker KK (2014) Langmuir 30:13369CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Zahra Taherinia
    • 1
  • Arash Ghorbani-Choghamarani
    • 1
  • Maryam Hajjami
    • 1
  1. 1.Department of Chemistry, Faculty of ScienceIlam UniversityIlamIran

Personalised recommendations