Catalysis Letters

, Volume 149, Issue 1, pp 77–83 | Cite as

The Synthesis of Ni–Cu Alloy Nanofibers via Vacuum Thermal Co-reduction Toward Hydrogen Generation from Hydrazine Decomposition

  • Hefang WangEmail author
  • Qinglong FuEmail author
  • Guanyan Zhang
  • Yangyang Sun


A safe and reductant-free method based on co-reduction of nickel and copper oxides via vacuum thermal treatment has been developed for the synthesis of Ni–Cu alloy nanofibers, which includes electrospinning of a nickel acetate/copper acetate/polyvinylpolypyrrolidone (NiAc/CuAc/PVP) precursor solution, followed by vacuum thermal reduction. On account of the synergistic effect between Cu and Ni, the Ni–Cu alloy nanofibers catalyst with an optimal composition exhibits good catalytic performance for the decomposition of hydrous hydrazine in NaOH solution.

Graphical Abstract

Ni–Cu alloy nanofibers have been prepared by a vacuum thermal co-reduction method, and further used as catalysts for hydrous hydrazine decomposition.


Ni–Cu alloy Nanofibers Catalysis Hydrogen production 



This work is financially supported by National Natural Science Foundation of China (No. 21776058) and Natural Sciences Foundation of Hebei province (No. B2017202226).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10562_2018_2575_MOESM1_ESM.docx (4.1 mb)
Supplementary material 1 (DOCX 4150 KB)


  1. 1.
    Yang J, Sudik A, Wolverton C, Siegel DJ (2010) Chem Soc Rev 39:656CrossRefGoogle Scholar
  2. 2.
    Sevilla M, Mokaya R (2014) Energy Environ Sci 7:1250CrossRefGoogle Scholar
  3. 3.
    Zhu QL, Xu Q (2015) Energy Environ Sci 8:478CrossRefGoogle Scholar
  4. 4.
    Yao Q, Lu ZH, Zhang R, Zhang S, Chen X, Jiang HL (2018) J Mater Chem A 6:4386CrossRefGoogle Scholar
  5. 5.
    Rossin A, Tuci G, Luconi L, Giambastiani G (2017) Acs Catal 7:5035CrossRefGoogle Scholar
  6. 6.
    Kang W, Varma A (2018) Appl Catal B 220:409CrossRefGoogle Scholar
  7. 7.
    Qiu YP, Yin H, Dai H, Gan LY, Dai HB, Wang P (2018) Chem Eur J 24:4902CrossRefGoogle Scholar
  8. 8.
    Wang J, Li Y, Zhang Y (2014) Adv Funct Mater 24:7073Google Scholar
  9. 9.
    Du X, Liu C, Du C, Cai P, Cheng G, Luo W (2017) Nano Res 10:2856CrossRefGoogle Scholar
  10. 10.
    Zhang Z, Zhang S, Yao Q, Chen X, Lu ZH (2017) Inorg Chem 56:11938CrossRefGoogle Scholar
  11. 11.
    Du XQ, Tan SY, Cai P, Luo W, Cheng GZ (2016) J Mater Chem A 4:14572CrossRefGoogle Scholar
  12. 12.
    Singh SK, Xu Q (2009) J Am Chem Soc 131:18032CrossRefGoogle Scholar
  13. 13.
    Liu M, Zheng Y, Xie S, Li N, Lu N, Wang J, Kim MJ, Guo L, Xia Y (2013) Phys Chem Chem Phys 15:11822CrossRefGoogle Scholar
  14. 14.
    Smith GN, Mears LLE, Rogers SE, Armes SP (2018) Chem Sci 9:922CrossRefGoogle Scholar
  15. 15.
    Zhang Z, Yang Q, Chen H, Chen K, Lu X, Ouyang P, Fu J, Chen JG (2018) Green Chem 20:197CrossRefGoogle Scholar
  16. 16.
    Hou CC, Li Q, Wang CJ, Peng CY, Chen QQ, Ye HF, Fu WF, Che CM, López N, Chen Y (2017) Energy Environ Sci 10:1770CrossRefGoogle Scholar
  17. 17.
    Piella J, Merkoçi F, Genç A, Arbiol J, Bastús NG, Puntes V (2017) J Mater Chem A 5:11917CrossRefGoogle Scholar
  18. 18.
    Wu DD, Wen M, Lin XJ, Wu QS, Gu C, Chen HX (2016) J Mater Chem A 4:6595CrossRefGoogle Scholar
  19. 19.
    Ben Aziza W, Petit JF, Demirci UB, Xu Q, Miele P (2014) Int J Hydrogen Energy 39:16919CrossRefGoogle Scholar
  20. 20.
    Du XQ, Yang CL, Zeng X, Wu T, Zhou YH, Cai P, Cheng GZ, Luo W (2017) Int J Hydrogen Energy 42:14181CrossRefGoogle Scholar
  21. 21.
    Tong DG, Tang DM, Chu W, Gu GF, Wu P (2013) J Mater Chem A 1:6425CrossRefGoogle Scholar
  22. 22.
    Manukyan KV, Cross A, Rouvimov S, Miller J, Mukasyan AS, Wolf EE (2014) Appl Catal A 476:47CrossRefGoogle Scholar
  23. 23.
    Wang HL, Yan JM, Li SJ, Zhang XW, Jiang Q (2015) J Mater Chem A 3:121CrossRefGoogle Scholar
  24. 24.
    Zhang JJ, Kang Q, Yang ZQ, Dai HB, Zhuang DW, Wang P (2013) J Mater Chem A 1:11623CrossRefGoogle Scholar
  25. 25.
    Singh SK, Singh AK, Aranishi K, Xu Q (2011) J Am Chem Soc 133:19638CrossRefGoogle Scholar
  26. 26.
    Özhava D, Kılıçaslan NZ, Özkar S (2015) Appl Catal B 162:573CrossRefGoogle Scholar
  27. 27.
    He L, Huang YQ, Wang AQ, Wang XD, Chen XW, Delgado JJ, Zhang T (2012) Angew Chem Int Ed 51:6191CrossRefGoogle Scholar
  28. 28.
    Fu QL, Yang P, Wang JC, Wang HF, Yang LJ, Zhao XC (2018) J Mater Chem A 6:11370CrossRefGoogle Scholar
  29. 29.
    Samuels TOM, Robertson AW, Kim H, Pasta M, Warner JH (2017) J Mater Chem A 5:10457CrossRefGoogle Scholar
  30. 30.
    Xiong JF, Shen H, Mao JX, Qin XT, Xiao P, Wang XZ, Wu Q, Hu Z (2012) J Mater Chem 22:11927CrossRefGoogle Scholar
  31. 31.
    Fu Y, Yu HY, Jiang C, Zhang TH, Zhan R, Li X, Li JF, Tian JH, Yang R (2018) Adv Funct Mater 28:1705094CrossRefGoogle Scholar
  32. 32.
    De Jesus JC, González I, Quevedo A, Puerta T (2005) J Mol Catal A 228:283CrossRefGoogle Scholar
  33. 33.
    Obaid AY, Alyoubi AO, Samarkandy AA, Al-Thabaiti SA, Al-Juaid SS, El-Bellihi AA, Deifallah El-HM (2000) J Therm Anal Calorim 61:985CrossRefGoogle Scholar
  34. 34.
    Lin ZY, Li JL, Li LH, Yu LL, Li WJ, Yang GW (2017) J Mater Chem A 5:773CrossRefGoogle Scholar
  35. 35.
    Cui X, Xiao P, Wang J, Zhou M, Guo WL, Yang Y, He YJ, Wang ZW, Yang YK, Zhang YH, Lin ZQ (2017) Angew Chem Int Ed 56:4488CrossRefGoogle Scholar
  36. 36.
    De S, Zhang JG, Luque R, Yan N (2016) Energy Environ Sci 9:3314CrossRefGoogle Scholar
  37. 37.
    Wang J, Xu YL, Ding B, Chang Z, Zhang XG, Yamauchi Y, Wu KCW (2017) Angew Chem Int Ed 130:2944CrossRefGoogle Scholar
  38. 38.
    Hu YX, Ye DL, Luo B, Hu H, Zhu XB, Wang SC, Li LL, Peng SJ, Wang LZ (2018) Adv Mater 30:1703824CrossRefGoogle Scholar
  39. 39.
    Guo X, Zhang XT, Song HH, Zhou JS (2017) J Mater Chem A 5:21343CrossRefGoogle Scholar
  40. 40.
    Isarain-Chavez E, Baro MD, Pellicer E, Sort J (2017) Nanoscale 9:18081CrossRefGoogle Scholar
  41. 41.
    Zheng YH, Xia MJ, Cheng Y, Rao F, Ding KY, Liu WL, Jia Y, Song ZT, Feng SL (2016) Nano Res 9:3453CrossRefGoogle Scholar
  42. 42.
    Yin H, Qiu YP, Dai H, Gan LY, Dai HB, Wang P (2018) J Phys Chem C 122:5443CrossRefGoogle Scholar
  43. 43.
    Liu PL, Gu XJ, Wu YY, Cheng J, Su HQ (2017) Int J Hydrogen Energ 42:19096CrossRefGoogle Scholar
  44. 44.
    Men Y, Du XQ, Cheng GZ, Luo W (2017) Int J Hydrogen Energ 42:27165CrossRefGoogle Scholar
  45. 45.
    Wang J, Zhang XB, Wang ZL, Wang LM, Zhang Y (2012) Energy Environ Sci 5:6885CrossRefGoogle Scholar
  46. 46.
    Wang HL, Yan JM, Wang ZL, O SI, Jiang Q (2013) J Mater Chem A 1:14957CrossRefGoogle Scholar
  47. 47.
    Cao N, Su J, Luo W, Cheng GZ (2014) Int J Hydrogen Energ 39:9726CrossRefGoogle Scholar
  48. 48.
    Wang HF, Wu LM, Jia AZ, Li XN, Shi ZT, Duan MN, Wang YJ (2018) Chem Eng J 332:637CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemical Engineering and TechnologyHebei University of TechnologyTianjinChina

Personalised recommendations