Advertisement

Measurement and Characterization of a High-Temperature, Coke-Resistant Bi-functional Ni/BZY15 Water-Gas-Shift Catalyst Under Steam-Reforming Conditions

  • Dylan M. Jennings
  • Canan Karakaya
  • Huayang Zhu
  • Chuancheng Duan
  • Ryan O’Hayre
  • Gregory S. Jackson
  • Ivar E. Reimanis
  • Robert J. Kee
Article
  • 36 Downloads

Abstract

This paper characterizes the bi-functional behavior of a unique, nano-dispersed Ni/BZY15 water-gas-shift catalyst under steam-reforming conditions. The catalyst is highly active above 500 \(^\circ\)C and has been found to be exceptionally stable in a hydrocarbon steam reforming environment. The performance can be attributed to two features: (1) well dispersed, nano-sized Ni particles with high surface area, and (2) the ability of the redox-active BZY15 support to remove carbon from the Ni. The bi-functionality is demonstrated through a comparison of WGS activity with BZY15 alone and with a traditional \(\text {Al}_2\text {O}_3\) support. The WGS activity is measured under a range of operating temperatures, steam-to-carbon ratios, and feed-gas flow rates. A series of elementary reaction steps are proposed to explain the bi-functionality and to provide a basis for development of a detailed reaction mechanism.

Graphical Abstract

Keywords

Water-gas shift Ni catalyst Reforming Bi-functional catalyst BZY15 

Notes

Acknowledgements

This research was supported by the National Science Foundation via Grant DMR1563754. Additional support was provided by Office of Naval Research via Grant N00014-16-1-2780 and Advanced Research Projects Agency-Energy (ARPA-E) for funding under the REBELS program (award DE-AR0000493). We gratefully acknowledge numerous insightful and helpful discussions with our colleagues at the Colorado School of Mines, Prof. Sandrine Ricote, Dr. Madison Kelley and Mr. Luca Imponenti.

Compliance with Ethical Standards

Conflicts of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    United States Department of Energy Fuel Cell Technologies Office, Hydrogen and Fuel Cells Overview; https://energy.gov/sites/prod/files/2017/06/f34/fcto-h2-fc-overview-dla-worldwide-energy-conf-2017-satyapal.pdf. Accessed 27 Feb 2018
  2. 2.
    Nowotny J, Dodson J, Fiechter S, Gür TM, Kennedy B, Macyk W (2018) Towards global sustainability: education on environmentally clean energy technologies. Renew Sustain Energy Rev 81:2541–2551CrossRefGoogle Scholar
  3. 3.
    Rostrup-Nielsen JR (2004) Steam reforming of hydrocarbons. A historical perspective. Stud Surf Sci Catal 147:121–126CrossRefGoogle Scholar
  4. 4.
    Rostrup-Nielsen JR, Sehested J, Nørskov JK (2002) Hydrogen and synthesis gas by steam and \(\text{ CO }_2\) reforming. Adv Catal 47:65–139Google Scholar
  5. 5.
    Larsson AC (2007) Study of catalyst deactivation in three different industrial processes. Växjö University Press, VäxjöGoogle Scholar
  6. 6.
    Argyle MD, Bartholomew CH (2015) Heterogenous catalyst deactivation and regenaration: a review. Catalysts 5:145–269CrossRefGoogle Scholar
  7. 7.
    Rostrup-Nielsen JR (1984) Sulfur-passivated nickel catalysts for carbon-free steam reforming of methane. J Catal 85:31–43CrossRefGoogle Scholar
  8. 8.
    Enger BC, Lødeng R, Holmen A (2008) A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts. Appl Catal A 346:1–27CrossRefGoogle Scholar
  9. 9.
    Claridge JB, Green MLH, Tsang SC, York A, Ashcroft AT, Battle PD (1993) A study of carbon deposition on catalysis during the partial oxidation of methane to synthesis gas. Catal Lett 22:299–305CrossRefGoogle Scholar
  10. 10.
    Duan C, Kee R, Zhu H, Karakaya C, Chen Y, Ricote S (2018) Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cellS. Nature 557(7704):217CrossRefGoogle Scholar
  11. 11.
    Karakaya C, Deutschmann O (2012) A simple method for CO chemisorption studies under continuous flow: adsorption and desorption behavior of Pt/\(\text{ Al }_2\text{ O }_3\) catalysts. Appl Catal A 445–446:221–230CrossRefGoogle Scholar
  12. 12.
    Bartholomew CH, Farrauto RJ (2006) Fundamentals of industrial catalytic processes. Wiley, HobokenGoogle Scholar
  13. 13.
    Rostrup-Nielsen JR, Hansen JHB (1993) \(\text{ CO }_2\)-reforming of methane over transition metals. J Catal 144:38–49CrossRefGoogle Scholar
  14. 14.
    Chen D, Christensen KO, Ochoa-Fernández E, Yu Z, Tøtdal B, Latorre N (2005) Synthesis of carbon nanofibers: effects of Ni crystal size during methane decomposition. J Catal 229:82–96CrossRefGoogle Scholar
  15. 15.
    Sehested J (2006) Four challanges for nickel steam-reforming catalysts. Catal Today 111:103–110CrossRefGoogle Scholar
  16. 16.
    Rostrup-Nielsen JR, Chirstiansen LJ (2011) Concept in syngas manufacturing. Imperial College Press, LondonCrossRefGoogle Scholar
  17. 17.
    Helveg S, Sehested J, Rostrup-Nielsen JR (2011) Whisker carbon in perspective. Catal Today 178:42–46CrossRefGoogle Scholar
  18. 18.
    Zhu H, Kee RJ, Janardhanan VM, Deutschmann O, Goodwin DG (2005) Modeling elementary heterogeneous chemistry and electrochemistry in solid-oxide fuel cells. J Electrochem Soc 152:A2427–A2440CrossRefGoogle Scholar
  19. 19.
    Maier L, Schaedel N, Delgado KH, Tisher S, Deutschmann O (2011) Steam reforming of methane over nickel: development of a multi-step surface reaction mechanism. Top Catal 54:845–858CrossRefGoogle Scholar
  20. 20.
    Karakaya C, Maier L, Deutschmann O (2016) Surface Reaction Kinetics of the Oxidation and Reforming of \(\text{ CH }_4\) over Rh/\(\text{ Al }_2\text{ O }_3\) Catalysts. Int J Chem Kinet 48:144–160CrossRefGoogle Scholar
  21. 21.
    Mortensen PM, Dybkjaer I (2015) Industrial scale experience on steam reforming of \(\text{ CO }_2\)-rich gas. Appl Catal A 495:141–151CrossRefGoogle Scholar
  22. 22.
    Hatlevik Ø, Gade SK, Keeling MK, Thoen PM, Davidson AP, Way JD (2010) Palladium and palladium alloy membranes for hydrogen separation and production: history, fabrication strategies, and current performance. Sep Purif Technol 73:59–64CrossRefGoogle Scholar
  23. 23.
    Coors WG (2014) A stoichiometric titration method for measuring galvanic hydrogen flux in ceramic hydrogen separation membranes. J Membr Sci 458:245–253CrossRefGoogle Scholar
  24. 24.
    Christensen KO, Chen D, Lødeng R, Holmen A (1999) Effect of supports and Ni crystal size on carbon formation and sintering during steam methane reforming. Appl Catal A 314:9–22CrossRefGoogle Scholar
  25. 25.
    Wang S, Lu GQ (1998) Role of \(\text{ CeO }_2\) in Ni/\(\text{ CeO }_2\)-\(\text{ Al }_2\text{ O }_3\) catalysts for carbon-dioxide reforming of methane. Appl Catal B 19:267–277CrossRefGoogle Scholar
  26. 26.
    Tomishige K, Chen YG, Fujimoto K (1999) Studies on carbon deposition in \(\text{ CO }_2\) reforming of \(\text{ CH }_4\) over nickel-magnesia solid solution catalysts. J Catal 181:91–103CrossRefGoogle Scholar
  27. 27.
    Guo J, Lou H, Zhao H, Chai D, Zheng X (2004) Dry reforming of methane over nickel catalysts supported on magnesium aluminate spinels. Appl Catal A 273:75–82CrossRefGoogle Scholar
  28. 28.
    Kroll VCH, Swaan HM, Mirodatos C (1996) Methane reforming reaction with carbon dioxide over Ni/\(\text{ SiO }_2\) catalyst. J Catal 161:409–422CrossRefGoogle Scholar
  29. 29.
    Yao L, Shi J, Xu H, Shen W, Hu C (2016) Low-temperature \(\text{ CO }_2\) reforming of methane on Zr-promoted Ni/\(\text{ SiO }_2\) catalyst. Fuel Process Technol 144:1–7CrossRefGoogle Scholar
  30. 30.
    Kho ET, Scott J, Amal R (2016) Ni/\(\text{ TiO }_2\) for low temperature steam reforming of methane. Chem Eng Sci 140:161–170CrossRefGoogle Scholar
  31. 31.
    Zhu WZ, Deevi SC (2003) A review on the status of anode materials for solid oxide fuel cells. Mat Sci Eng A362:228–239CrossRefGoogle Scholar
  32. 32.
    MacIntosh S, Gorte RJ (2004) Direct hydrocarbon solid oxide fuel cell. Chem Rev 104:4845–4865CrossRefGoogle Scholar
  33. 33.
    Choi SO, Moon SH (2009) Performance of \(\text{ La }_{1-x}\text{ Ce }_x\text{ Fe }_{0.7}\text{ Ni }_{0.3}\text{ O }_3\) perovskite catalysts for methane steam reforming. Catal Today 146:148–153CrossRefGoogle Scholar
  34. 34.
    Smirnova A, Sadykov V, Mezentseva N, Buninab R, Pilipenko VV, Alikina G (2011) Design and testing of structured catalysts for internal reforming of \(\text{ CH }_4\) in intermediate temperature solid oxide fuel cells (IT SOFC). ECS Trans 35:2771–2780CrossRefGoogle Scholar
  35. 35.
    Dong W, Yaqub A, Janjua NK, Raza R, Afzal M, Zhu B (2016) All in one multifunctional perovskite material for next generation SOFC. Electrochem Acta 193:225–230CrossRefGoogle Scholar
  36. 36.
    Otsuka K, Hatano M, Morikawa A (1983) Hydrogen from water by reduced cerium-oxide. J Catal 79:493–493CrossRefGoogle Scholar
  37. 37.
    Bunluesin T, Gorte RJ, Graham GW (1998) Studies of the water-gas-shift reaction on ceria-supported Pt, Pd, and Rh: implications for oxygen-storage properties. Appl Catal B 15:107CrossRefGoogle Scholar
  38. 38.
    Sharma S, Hilaire S, Vohs JM, Gorte RJ, Jen HW (2000) Evidence for oxidation of ceria by \(\text{ CO }_2\). J Catal 190:199–204CrossRefGoogle Scholar
  39. 39.
    Laosiripojana N, Assabumrungrat S (2005) Methane steam reforming over \(\text{ Ni/Ce }\text{ ZrO }_2\) catalyst: influences of \(\text{ CeZrO }_2\) support on reactivity, resistance toward carbon formation, and intrinsic reaction kinetics. Appl Catal A 290:200–211CrossRefGoogle Scholar
  40. 40.
    Jacobs G, Graham UM, Chenu E, Patterson PM, Dozier A, Davis BH (2005) Low-temperature watergas shift: impact of Pt promoter loading on the partial reduction of ceria and consequences for catalyst design. J Catal 229:499–512CrossRefGoogle Scholar
  41. 41.
    Azzam KG, Babich IV, Seshan K, Lefferts L (2007) Bifunctional catalysts for single-stage watergas shift reaction in fuel cell applications. Part 1. Effect of the support on the reaction sequence. J Catal 251:153–162CrossRefGoogle Scholar
  42. 42.
    Shido T, Iwasawa Y (1993) Reactant-promoted reaction mechanism for water-gas-shift reaction on Rh-doped \(\text{ CeO }_2\). J Catal 141:71–81CrossRefGoogle Scholar
  43. 43.
    Goguet A, Shekhtman SO, Burch R, Hardacre C, Meunier FC, Yablonsky GS (2006) Pulse-responce TAP studies of the reverse water-gas shift reaction over a Pt/\(\text{ CeO }_2\) catalyst. J Catal 237:102–110CrossRefGoogle Scholar
  44. 44.
    Aranifard S, Ammal SC, Heyden A (2014) On the importance of metal-oxide interface sites for water-gas shift reaction over Pt/\(\text{ CeO }_2\) catalysts. J Catal 309:314–324CrossRefGoogle Scholar
  45. 45.
    Gradisher L, Dutcher B, Fan M (2015) Catalytic hydrogen production from fossil fuels via the water gas shift reaction. Appl Enegry 139:335–349CrossRefGoogle Scholar
  46. 46.
    Sun Y, Grigore M, Hla SS, Morpeth LD, Edwards JH (2016) Development of a new bi-functional steam reforming/water-gas shift catalyst for production of hydrogen in a membrane reactor. Int J Hydrog Energy 41:10335–10345CrossRefGoogle Scholar
  47. 47.
    Nowosielska M, Jozwiak WK, Rynkowski J (2009) Physicochemical characterization of \(\text{ Al }_2\text{ O }_3\) supported NiRh systems and their catalytic performance in \(\text{ CH4 }/\text{ CO }_2\) reforming. Catal Lett 128:83–93CrossRefGoogle Scholar
  48. 48.
    Kim SO, Chung JH, Kim YT, Han J, Yoon SP, Nam SW (2010) \(\text{ SiO }_2/\text{ Ni }\) and \(\text{ CeO }_2/\text{ Ni }\) catalysts for single-stage water gas shift reaction. Int J Hydrog Energy 35:3136–3140CrossRefGoogle Scholar
  49. 49.
    Hwang KH, Lee CB, Park JS (2011) Advanced nickel metal catalyst for watergas shift reaction. J Power Sources 196:1349–1352CrossRefGoogle Scholar
  50. 50.
    Corthals S, Nederkassel JV, Geboers J, Winne HD, Noyen JV, Moens B (2008) Influence of composition of \(\text{ MgAl }_2\text{ O }_4\) supported \(\text{ NiCeO }_2\text{ ZrO }_2\) catalysts on coke formation and catalyst stability for dry reforming of methane. Catal Today 138:28–32CrossRefGoogle Scholar
  51. 51.
    Morrissey A (2015) PhD Thesis: the reduction of nickel doped fluorite and perovskite structured oxides. Colorado School of Mines, GoldenGoogle Scholar
  52. 52.
    Shao Z, Yang W, Cong Y, Dong H, Tong J, Xiong G (2000) Investigation of the permeation behavior and stability of a \(\text{ Ba }_{0.5}\text{ Sr }_{0.5}\text{ Co }_{0.8}\text{ Fe }_{0.2}\text{ O }_{3-\delta }\) oxygen membrane. J Membr Sci 172:177–188CrossRefGoogle Scholar
  53. 53.
    Karakaya C, Otterstätter R, Maier L, Deutschmann O (2014) Kinetics of the water-gas shift reaction over Rh/\(\text{ Al }_2\text{ O }_3\) catalysts. Appl Catal A 470:31–44CrossRefGoogle Scholar
  54. 54.
    Kreuer KD (2003) Proton-conducting oxides. Annu Rev Mater Res 33:333–359CrossRefGoogle Scholar
  55. 55.
    Norby T, Widerøe M, Glöckner R, Larring Y (2004) Hydrogen in oxides. Dalton Trans 7:3012–3018CrossRefGoogle Scholar
  56. 56.
    Duval SBC, Holtappels P, Vogt UF, Stimming U, Graule T (2009) Characterisation of \(\text{ BaZr }_{0.9}\text{ Y }_{0.1}\text{ O }_{3-\delta }\) prepared by three different synthesis methods: study of the sinterability and the conductivity. Fuel Cells 0:1–9Google Scholar
  57. 57.
    Zhu H, Ricote S, Coors WG, Kee RJ (2015) Interpreting 1 equilibrium-conductivity and conductivity-relaxation measurements to establish thermodynamic and transport properties for multiple charged defect conducting ceramics. Faraday Discuss 182:49–74CrossRefGoogle Scholar
  58. 58.
    Kee RJ, Zhu H, Hildenbrand BW, Vøllestad E, Sanders MD, O’Hayre RP (2013) Modeling the steady-state and transient response or polarized and non-polarized proton-conducting doped-perovskite membranes. J Electrochem Soc 160:F290–F300CrossRefGoogle Scholar
  59. 59.
    Vøllestad E, Zhu H, Kee RJ (2014) Interpretation of defect and gas-phase fluxes through mixed-conducting ceramics using Nernst-Planck-Poisson and integral formulations. J Electrochem Soc 161:F114–F124CrossRefGoogle Scholar
  60. 60.
    Schober T, Bohn HG (2000) Water vapor solubility and electrochemical characterization of the high temperature proton conductor \(\text{ BaZr }_{0.9}\text{ Y }_{0.1}\text{ O }_{2.95}\). Solid State Ionics 127:351–360CrossRefGoogle Scholar
  61. 61.
    Ricote S, Bonanos N, Caboche G (2009) Water vapour solubility and conductivity study of the proton conductor \(\text{ BaCe }_{0.9-x}\text{ Zr }_x\text{ Y }_{0.1}\text{ O }_{3-\delta }\). Solid State Ionics 180:990–997CrossRefGoogle Scholar
  62. 62.
    Kjølseth C, Wang LY, Haugsrud R, Norby T (2010) Determination of the enthalpy of hydration of oxygen vacancies in Y-doped \(\text{ BaZrO }_3\) and \(\text{ BaCeO }_3\) by TG-DSC. Solid State Ionics 181:1740–1745CrossRefGoogle Scholar
  63. 63.
    Zhu H, Ricote S, Duan C, O’Hayre RP, Tsvetkov DS, Kee RJ (2018) Defect incorporation and transport within dense \({\rm BaZr}_{0.8}{\rm Y}_{0.2}{\rm O}_{3-\delta }\) (BZY20) proton-conducting membranes. J Electrochem Soc 165:F581–F588CrossRefGoogle Scholar
  64. 64.
    Yang L, Wang S, Blinn K, Liu M, Liu Z, Cheng Z (2009) Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: \(\text{ BaZr }_{0.1}\text{ Ce }_{0.7}\text{ Y }_{0.2-x}\text{ Yb }_{x}\text{ O }_{3-\delta }\). Science 326:126–129CrossRefGoogle Scholar
  65. 65.
    Yang L, Choi Y, Qin W, Chen H, Blinn K, Liu M (2011) Promotion of water-mediated carbon removal by nanostructured barium oxide/nickel interfaces in solid oxide fuel cells. Nature Commun 2:357–365CrossRefGoogle Scholar
  66. 66.
    Shishkin M, Ziegler T (2013) Coke-tolerant \(\text{ Ni }/\text{ BaCe }_{1-x}\text{ Y }_x\text{ O }_{3-\delta }\) anodes for solid oxide fuel cells: DFT+U study. J Phys Chem C 117:7086–7096CrossRefGoogle Scholar
  67. 67.
    Bandura AV, Evarestov RA, Kuruch DD (2010) Hybrid HFDFT modeling of monolayer water adsorption on (001) surface of cubic \(\text{ BaHfO }_3\) and \(\text{ BaZrO }_3\) crystals. Surf Sci 604:1591–1597CrossRefGoogle Scholar
  68. 68.
    Liu M, Choi Y, Yang L, Blinn K, Qin W, Liu P (2012) Direct octane fuel cells: a promising power for transportation. Nano Energy 1:448–455CrossRefGoogle Scholar
  69. 69.
    Maier L, Schädel B, Delgado KH, Tischer S, Deutschmann O (2011) Steam reforming of methane over nickel: development of a multi-step surface reaction mechanism. Top Catal 54:845–858CrossRefGoogle Scholar
  70. 70.
    Catapan FC, Oliveira AAM, Chen Y, Vlachos DG (2012) DFT study of the water-gas shift reaction an coke formation on Ni(111) and Ni(211) surfaces. J Phys Chem C 116:20281–20291CrossRefGoogle Scholar
  71. 71.
    Pajonk GM (2000) Contribution of spillover effects to heterogenous catalysis. Appl Catal A 202:157–169CrossRefGoogle Scholar
  72. 72.
    Li X, Liu M, Lai Y, Ding D, Gong M, Lee JP (2015) In situ probing of the mechanisms of coking resistance on catalyst modified anodes for solid oxide fuel cells. Chem Matter 27:822–828CrossRefGoogle Scholar
  73. 73.
    Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S (2013) The materials project: a materials genome approach to accelerating materials innovation APL materials. APL Mater 1:011002–1–011002–11CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Dylan M. Jennings
    • 1
  • Canan Karakaya
    • 2
  • Huayang Zhu
    • 2
  • Chuancheng Duan
    • 1
  • Ryan O’Hayre
    • 1
  • Gregory S. Jackson
    • 2
  • Ivar E. Reimanis
    • 1
  • Robert J. Kee
    • 2
  1. 1.Metallurgical and Materials EngineeringColorado School of MinesGoldenUSA
  2. 2.Mechanical EngineeringColorado School of MinesGoldenUSA

Personalised recommendations