Catalysis Letters

, Volume 148, Issue 12, pp 3583–3591 | Cite as

Theoretical and Experimental Studies of CoGa Catalysts for the Hydrogenation of CO2 to Methanol

  • Joseph A. Singh
  • Ang Cao
  • Julia Schumann
  • Tao Wang
  • Jens K. Nørskov
  • Frank Abild-PedersenEmail author
  • Stacey F. BentEmail author


Methanol is an important chemical compound which is used both as a fuel and as a platform molecule in chemical production. Synthesizing methanol, as well as dimethyl ether, directly from carbon dioxide and hydrogen produced using renewable electricity would be a major step forward in enabling an environmentally sustainable economy. We utilize density functional theory combined with microkinetic modeling to understand the methanol synthesis reaction mechanism on a model CoGa catalyst. A series of catalysts with varying Ga content are synthesized and experimentally tested for catalytic performance. The performance of these catalysts is sensitive to the Co:Ga ratio, whereby increased Ga content results in increased methanol and dimethyl ether selectivity and increased Co content results in increased selectivity towards methane. We find that the most active catalysts have up to 95% CO-free selectivity towards methanol and dimethyl ether during CO2 hydrogenation and are comparable in performance to a commercial CuZn catalyst. Using in situ DRIFTS we experimentally verify the presence of a surface formate intermediate during CO2 hydrogenation in support of our theoretical calculations.

Graphical Abstract


Methanol Carbon dioxide Density functional theory 



We acknowledge financial support from the U.S. Department of Energy, Office of Basic Energy Sciences to the SUNCAT Center for Interface Science and Catalysis. The authors gratefully acknowledge the use of the Stanford Nano Shared Facilities (SNSF) of Stanford University for sample characterization. The authors would like to thank Andrew Riscoe for performing the nitrogen physisorption measurements. Ang Cao gratefully acknowledges financial support from China Scholarship Council.

Compliance with Ethical Standards

Conflict of interest

All authors declare no conflicts of interest.

Supplementary material

10562_2018_2542_MOESM1_ESM.pdf (109 kb)
Supplementary material 1 (PDF 109 KB)


  1. 1.
    Olah GA, Goeppert A, Prakash GKS (2009) J Org Chem 74:487–498CrossRefGoogle Scholar
  2. 2.
    Schumann J, Lunkenbein T, Tarasov A et al (2014) ChemCatChem 6:2889–2897CrossRefGoogle Scholar
  3. 3.
    Sharafutdinov I, Elkjær CF, De Carvalho HWP et al (2014) J Catal 320:77–88CrossRefGoogle Scholar
  4. 4.
    Studt F, Sharafutdinov I, Abild-Pedersen F et al (2014) Nat Chem 6:320–324CrossRefGoogle Scholar
  5. 5.
    Bonivardi AL, Chiavassa DL, Querini CA et al (2000) Stud Surf Sci Catal 130:3747–3752CrossRefGoogle Scholar
  6. 6.
    Collins SE, Delgado JJ, Mira C et al (2012) J Catal 292:90–98CrossRefGoogle Scholar
  7. 7.
    Fujitani T, Saito M, Kanai Y et al (1993) Chem Lett 22:1079–1080CrossRefGoogle Scholar
  8. 8.
    Toyir J, Ramírez de la Piscina P, Fierro JLG et al (2001) Appl Catal B 34:255–266CrossRefGoogle Scholar
  9. 9.
    Ning X, An Z, He J (2016) J Catal 340:236–247CrossRefGoogle Scholar
  10. 10.
    An Z, Ning X, He J (2017) J Catal 356:157–164CrossRefGoogle Scholar
  11. 11.
    Giannozzi P, Baroni S, Bonini N et al (2009) J Phys Condens Matter 21:395502CrossRefGoogle Scholar
  12. 12.
    Bahn SR, Jacobsen KW (2002) Comput Sci Eng 4:56–66CrossRefGoogle Scholar
  13. 13.
    Wellendorff J, Lundgaard KT, Møgelhøj A et al (2012) Phys Rev B 85:32–34CrossRefGoogle Scholar
  14. 14.
    Wellendorff J, Silbaugh TL, Garcia-Pintos D et al (2015) Surf Sci 640:36–44CrossRefGoogle Scholar
  15. 15.
    Henkelman G, Uberuaga BP, Jónsson H (2000) J Chem Phys 113:9901–9904CrossRefGoogle Scholar
  16. 16.
    Medford AJ, Shi C, Hoffmann MJ et al (2015) Catal Lett 145:794–807CrossRefGoogle Scholar
  17. 17.
    Lausche AC, Medford AJ, Khan TS et al (2013) J Catal 307:275–282CrossRefGoogle Scholar
  18. 18.
    Schumann J, Medford AJ, Yoo JS et al (2018) ACS Catal 8:3447–3453CrossRefGoogle Scholar
  19. 19.
    Medford AJ, Lausche AC, Abild-Pedersen F et al (2014) Top Catal 57:135–142CrossRefGoogle Scholar
  20. 20.
    Singh JA, Yang N, Liu X et al (2018) J Phys Chem C 122:2184–2194CrossRefGoogle Scholar
  21. 21.
    Abild-Pedersen F, Greeley J, Studt F et al (2007) Phys Rev Lett 99:016105CrossRefGoogle Scholar
  22. 22.
    Studt F, Behrens M, Kunkes EL et al (2015) ChemCatChem 7:1105–1111CrossRefGoogle Scholar
  23. 23.
    Petre A, Auroux A, Gélin P et al (2001) Thermochim Acta 379:177–185CrossRefGoogle Scholar
  24. 24.
    Zhang Y, Jacobs G, Sparks DE et al (2002) Catal Today 71:411–418CrossRefGoogle Scholar
  25. 25.
    Das T, Deo G (2011) J Mol Catal A 350:75–82CrossRefGoogle Scholar
  26. 26.
    Fisher IA, Bell AT (1998) J Catal 178:153–173CrossRefGoogle Scholar
  27. 27.
    Toomes RL, King DA (1996) Surf Sci 349:1–18CrossRefGoogle Scholar
  28. 28.
    Abild-Pedersen F, Andersson MP (2007) Surf Sci 601:1747–1753CrossRefGoogle Scholar
  29. 29.
    Weststrate CJ, van de Loosdrecht J, Niemantsverdriet JW (2016) J Catal 342:1–16CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Joseph A. Singh
    • 1
  • Ang Cao
    • 2
    • 3
  • Julia Schumann
    • 2
    • 3
  • Tao Wang
    • 2
    • 3
  • Jens K. Nørskov
    • 2
    • 3
  • Frank Abild-Pedersen
    • 2
    • 3
    Email author
  • Stacey F. Bent
    • 3
    Email author
  1. 1.Department of ChemistryStanford UniversityStanfordUSA
  2. 2.SLAC National Accelerator LaboratorySUNCAT Center for Interface Science and CatalysisMenlo ParkUSA
  3. 3.Department of Chemical EngineeringStanford UniversityStanfordUSA

Personalised recommendations