Advertisement

Catalysis Letters

, Volume 148, Issue 12, pp 3715–3722 | Cite as

Structure and Chemistry of Cu–Fe–Al Nanocomposite Catalysts for CO Oxidation

  • A. V. Fedorov
  • A. M. Tsapina
  • O. A. Bulavchenko
  • A. A. Saraev
  • G. V. Odegova
  • D. Yu. Ermakov
  • Y. V. Zubavichus
  • V. A. Yakovlev
  • V. V. Kaichev
Article
  • 165 Downloads

Abstract

High-active Fe–Al and Cu–Fe–Al nanocomposite catalysts were synthesized by fusion of aluminium, iron, and copper salts and then tested in the oxidation of CO. It was found that the activity of Fe–Al catalysts depends on the Fe concentration and the maximum is achieved when the Fe2O3 content is approximately 82 wt%. The addition of Cu leads to a significant increase in activity. Using adsorption techniques, X-ray diffraction, X-ray absorption spectroscopy, and Fourier-transform infrared spectroscopy, morphology, structure, and chemistry of the catalysts were studied. It was shown that the Fe–Al catalysts consist of Fe2O3 and Al2O3 phases mainly. Alumina is in an amorphous state whereas iron oxide forms nanoparticles with the protohematite structure. The Al3+ cations partially dissolute in the Fe2O3 lattice. X-ray absorption spectroscopy indicated that the Cu–Fe–Al catalysts in addition contain CuO and CuFe2O4 oxides in an amorphous state.

Graphical Abstract

Keywords

Heterogeneous catalysis Combustion CO oxidation Nanostructure 

Notes

Acknowledgements

This work was supported by the Russian Science Foundation (Grant No. 17-73-20157).

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interests.

References

  1. 1.
    Simonov AD, Yazykov NA, Vedyakin PI, Lavrov GA, Parmon VN (2000) Catal Today 60:139CrossRefGoogle Scholar
  2. 2.
    Kobayashi J, Kawamoto K (2010) J Mater Cycles Waste Manag 12:10CrossRefGoogle Scholar
  3. 3.
    Arena U (2012) Waste Manag 32:625CrossRefGoogle Scholar
  4. 4.
    Simonov AD, Fedorov NA, Dubinin YV, Yazykov NA, Yakovlev VA, Parmon VN (2013) Catal Ind 5:42CrossRefGoogle Scholar
  5. 5.
    Fedorov A, Ermakov D, Yazykov N, Yakovlev V (2017) Abstract book of the 13th European Congress on Catalysis, Florence, Italy, 2017, p 159Google Scholar
  6. 6.
    Yashnik SA, Chesalov YA, Ishchenko AV, Kaichev VV, Ismagilov ZR (2017) Appl Catal B 204:89CrossRefGoogle Scholar
  7. 7.
    Walker JS, Straguzzi GI, Manogue WH, Schuit GCA (1988) J Catal 110:298CrossRefGoogle Scholar
  8. 8.
    Li P, Miser DE, Rabiei S, Yadav RT, Hajaligol MR (2003) Appl Catal B 43:151CrossRefGoogle Scholar
  9. 9.
    Schoch R, Huang H, Schünemann V, Bauer M (2014) ChemPhysChem 15:3768CrossRefGoogle Scholar
  10. 10.
    Carriazo JG, Centeno MA, Odriozola JA, Moreno S, Molina R (2007) Appl Catal A 317:120CrossRefGoogle Scholar
  11. 11.
    Bowker M, Gibson EK, Silverwood IP, Brookes C (2016) Faraday Discuss 188:387CrossRefGoogle Scholar
  12. 12.
    Patlolla A, Carino EV, Ehrlich SN, Stavitski E, Frenkel AI (2012) ACS Catal 2:2216CrossRefGoogle Scholar
  13. 13.
    Zhu M, Rocha TCR, Lunkenbein T, Knop-Gericke A, Schlögl R, Wachs IE (2016) ACS Catal 6:4455CrossRefGoogle Scholar
  14. 14.
    Veligzhanin AA, Zubavichus YV, Chernyshov AA, Trigub AL, Khlebnikov AS, Nizovskii AI, Khudorozhkov AK, Beck I, Bukhtiyarov VI (2010) J Struct Chem 51:20CrossRefGoogle Scholar
  15. 15.
    Ravel B, Newville M (2005) J Synchrotron Rad 12:537CrossRefGoogle Scholar
  16. 16.
    Beck IE, Bukhtiyarov VI, Pakharukov IY, Zaikovsky VI, Kriventsov VV, Parmon VN (2009) J Catal 268:60CrossRefGoogle Scholar
  17. 17.
    Petrov L (2002) In: Derouane EG, Parmon V, Lemos F, Ribeiro FR (eds) Principles and methods for accelerated catalyst design and testing. Springer, Dordrecht, pp 13–69CrossRefGoogle Scholar
  18. 18.
    Shannon RD (1976) Acta Cryst A 32:751CrossRefGoogle Scholar
  19. 19.
    Selvan RK, Krishnan V, Augustin CO, Bertagnolli H, Kim CS, Gedanken A (2008) Chem Mater 20:429CrossRefGoogle Scholar
  20. 20.
    Porto SPS, Krishnan RS (1967) J Chem Phys 47:1009CrossRefGoogle Scholar
  21. 21.
    Onari S, Arai T, Kudo K (1977) Phys Rev B 16:1717CrossRefGoogle Scholar
  22. 22.
    Chamritski I, Burns G (2005) J Phys Chem B 109:4965CrossRefGoogle Scholar
  23. 23.
    Rendon JL, Serna CJ (1981) Clay Miner 16:375CrossRefGoogle Scholar
  24. 24.
    Burgina EB, Kustova GN, Tsybulya SV, Kryukova GN, Litvak GS, Isupova LA, Sadykov VA (2000) J Struct Chem 41:396CrossRefGoogle Scholar
  25. 25.
    Chernyshova IV, Hochella MF Jr, Madden AS (2007) Phys Chem Chem Phys 9:1736CrossRefGoogle Scholar
  26. 26.
    Costa TMH, Gallas MR, Benvenutti EV, da Jornada JAH (1999) J Phys Chem B 103:4278CrossRefGoogle Scholar
  27. 27.
    Feng Y, Zheng X (2010) Nano Lett 10:4762CrossRefGoogle Scholar
  28. 28.
    Gaur A, Shrivastava BD, Joshi SK (2009) J Phys Conf Ser 190:012084CrossRefGoogle Scholar
  29. 29.
    Hsiao MC, Wang HP, Yang YW (2001) Environ Sci Technol 35:2532CrossRefGoogle Scholar
  30. 30.
    Kau LS, Spira-Solomon DJ, Penner-Hahn JE, Hodgson KO, Solomon EI (1987) J Am Chem Soc 109:6433CrossRefGoogle Scholar
  31. 31.
    Wang X, Hanson JC, Frenkel AI, Kim J-Y, Rodriguez JA (2004) J Phys Chem B 108:13667CrossRefGoogle Scholar
  32. 32.
    Xin Q, Papavasiliou A, Boukos N, Glisenti A, Li JPH, Yang Y, Philippopoulos CJ, Poulakis E, Katsaros FK, Meynen V, Cool P (2018) Appl Catal B 223:103CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. V. Fedorov
    • 1
    • 2
  • A. M. Tsapina
    • 1
  • O. A. Bulavchenko
    • 1
    • 2
  • A. A. Saraev
    • 1
    • 2
  • G. V. Odegova
    • 1
  • D. Yu. Ermakov
    • 1
  • Y. V. Zubavichus
    • 3
  • V. A. Yakovlev
    • 1
    • 2
  • V. V. Kaichev
    • 1
    • 2
  1. 1.Boreskov Institute of CatalysisNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.National Research Center “Kurchatov Institute”MoscowRussia

Personalised recommendations