Shape/Crystal Facet of Ceria Induced Well-Dispersed and Stable Au Nanoparticles for the Selective Hydrogenation of Phenylacetylene
- 28 Downloads
Abstract
A series of CeO2 with the morphology of nanocube (NC), nanopolyhedron (NP) and nanorod (NR) were synthesized by hydrothermal method as substrates to support monometallic Au catalysts. Insight into support morphology-dependent the property of active component and catalytic behavior for the selective hydrogenation of phenylacetylene has been performed. Specifically, nanocube ceria could disperse monometallic Au nanoparticles due to a large amount of low coordinated sites that readily generated the strong interaction for anchoring active metal, whereas the polyhedron and rod-like ceria supported Au nanoparticles possessed large size and wide particle distribution. As expected, well-dispersed and stable Au/CeO2 nanocube demonstrated 83% of selectivity towards styrene when the conversion of phenylacetylene reached 90%, which was much higher than that of others. Preferable activity was mainly ascribed to small size of Au nanoparticles, which facilitated the adsorption/dissociation of hydrogen considered as the rate-determining step. Enhanced selectivity was due to the electronic effect that caused by strong interaction between Au and cubic CeO2, which also contributed to good stability. This work not only provides a facile method for the preparation of highly dispersed and efficient Au/CeO2 catalysts by modulating the morphology of support, but also offers a novel idea for the fabrication of other highly dispersed supported metal catalysts with enhanced behavior in heterogeneous catalysis.
Graphical Abstract
Keywords
Ceria Gold catalyst Support morphology Selective hydrogenation of phenylacetyleneNotes
Acknowledgements
This work was supported by National Key Research and Development Program of China (2016YFB0301601), the National Natural Science Foundation and the Fundamental Research Funds for the Central Universities (BHYC1701B, JD1816).
Compliance with Ethical Standards
Conflict of interest
We declare that there is no conflict of interest for this work.
References
- 1.Golubina EV, Lokteva ES, Erokhin AV et al (2016) J Catal 344:90–99CrossRefGoogle Scholar
- 2.Borodziński A, Bond GC (2006) Catal Rev Sci Eng 48:91–144CrossRefGoogle Scholar
- 3.Wilhite BA, McCready MJ, Varma A (2002) Ind Eng Chem Res 41:3345–3350CrossRefGoogle Scholar
- 4.Vysakh AB, Lazar A, Yadukiran V et al (2016) Catal Sci Technol 6:708–712CrossRefGoogle Scholar
- 5.Szala BJ, Falkowska M, Bowron DT et al (2017) ChemPhysChem 18:2541–2548CrossRefGoogle Scholar
- 6.Feng JT, Liu YN, Yin M et al (2016) J Catal 344:854–864CrossRefGoogle Scholar
- 7.Liu Y, He Y, Zhou D et al (2016) Catal Sci Technol 6:3027–3037CrossRefGoogle Scholar
- 8.Deng D, Yang Y, Gong Y et al (2013) Green Chem 15:2525–2531CrossRefGoogle Scholar
- 9.Lozano MC, Castillejos E, Bachiller B et al (2015) Catal Today 249:117–126CrossRefGoogle Scholar
- 10.Zhang X, Shi H, Xu BQ (2011) J Catal 279:75–87CrossRefGoogle Scholar
- 11.Li M, Wang X, Cárdenas-Lizana F et al (2017) Catal Today 279:19–28CrossRefGoogle Scholar
- 12.Almora-Barrios N, Cano I, van Leeuwen PW et al (2017) ACS Catal 7:3949–3954CrossRefGoogle Scholar
- 13.Chen H, Cullen DA, Larese JZ (2015) J Phys Chem C 119:28885–28894CrossRefGoogle Scholar
- 14.Hao CH, Guo XN, Pan YT et al (2016) J Am Chem Soc 138:9361–9364CrossRefGoogle Scholar
- 15.Liu X, Mou CY, Lee S et al (2012) J Catal 285:152–159CrossRefGoogle Scholar
- 16.Mitsudome T, Yamamoto M, Maeno Z et al (2015) J Am Chem Soc 137:13452–13455CrossRefGoogle Scholar
- 17.Yan X, Bao J, Yuan C et al (2016) J Catal 344:194–201CrossRefGoogle Scholar
- 18.Yan X, Wheeler J, Jang B et al (2014) Appl Catal A 487:36–44CrossRefGoogle Scholar
- 19.Edwards JK, Solsona B, Carley AF et al (2009) Science 323:1037–1041CrossRefGoogle Scholar
- 20.Sudarsanam P, Reddy PS, Großmann D (2014) Appl Catal B 144:900–908CrossRefGoogle Scholar
- 21.Liu YN, Feng JT, He Y YF et al (2015) Catal Sci Technol 5:1231–1241CrossRefGoogle Scholar
- 22.He YF, Liu LL, Liu YN et al (2014) J Catal 309:166–173CrossRefGoogle Scholar
- 23.Delannoy L, Thrimurthulu G, Reddy PS et al (2014) Phys Chem Chem Phys 16:26514–26527CrossRefGoogle Scholar
- 24.Du X, Zhang D, Shi L et al (2012) J Phys Chem C 116:10009–10016CrossRefGoogle Scholar
- 25.Chang S, Li M, Hua Q et al (2012) J Catal 293:195–204CrossRefGoogle Scholar
- 26.Ke J, Xiao J, Zhu W et al (2013) J Am Chem Soc 135:15191–15200CrossRefGoogle Scholar
- 27.Rodriguez JA, Grinter DC, Liu Z et al (2017) Chem Soc Rev 46:1824–1841CrossRefGoogle Scholar
- 28.Si R, Flytzani-Stephanopoulos M (2018) Angew Chem Int Ed 47:2884–2887CrossRefGoogle Scholar
- 29.Wang F, Li C, Zhang X et al (2015) J Catal 329:177–186CrossRefGoogle Scholar
- 30.Haruta M, Yamada N, Kobayashi T et al (1989) J Catal 115:301–309CrossRefGoogle Scholar
- 31.Tabakova T, Avgouropoulos G, Papavasiliou J et al (2011) Appl Catal B Environ 101:256–265CrossRefGoogle Scholar
- 32.Fiorenza R, Crisafulli C, Scire S (2016) Int J Hydrog Energy 41:19390–19398CrossRefGoogle Scholar
- 33.Fu Q, Weber A, Flytzani-Stephanopoulos M (2001) Catal Lett 77:87–95CrossRefGoogle Scholar
- 34.Hu Z, Liu X, Meng D et al (2016) ACS Catal 6:2265–2279CrossRefGoogle Scholar
- 35.Huang XS, Sun H, Wang LC et al (2009) Appl Catal B 90:224–232CrossRefGoogle Scholar
- 36.Trovarelli A, Llorca J (2017) ACS Catal 7:4716–4735CrossRefGoogle Scholar
- 37.Mai HX, Sun LD, Zhang YW et al (2005) J Phys Chem B 109:24380–24385CrossRefGoogle Scholar
- 38.Si R, Flytzani-S M (2008) Angew Chem Int Ed 120:2926–2929CrossRefGoogle Scholar
- 39.Conesa JC (1995) Surf Sci 339:337–352CrossRefGoogle Scholar
- 40.Bi QY, Du XL, Liu YM et al (2012) J Am Chem Soc 134:8926–8933CrossRefGoogle Scholar
- 41.Ma C, Du Y, Feng J et al (2014) J Catal 317:263–271CrossRefGoogle Scholar
- 42.Ziaei-azad H, Yin CX, Shen J et al (2013) J Catal 300:113–124CrossRefGoogle Scholar
- 43.Vilé G, Dähler P, Vecchietti J et al (2015) J Catal 324:69–78CrossRefGoogle Scholar
- 44.Soler L, Casanovas A, Urricha A et al (2016) Appl Catal B 197:47–55CrossRefGoogle Scholar
- 45.Chen YD, Li CM, Zhou JY et al (2016) ACS Catal 6:2435–2442CrossRefGoogle Scholar
- 46.Yun S, Lee S, Yook S et al (2015) ACS Catal 5:5756–5765CrossRefGoogle Scholar
- 47.Nikolaev SA, Smirnov VV (2009) Catal Today 147:336–341CrossRefGoogle Scholar
- 48.Horiuti I, Polanyi M (1934) Trans Faraday Soc 30:1164–1172CrossRefGoogle Scholar
- 49.Horiuti I, Polanyi M (1933) Nature 132:819–820CrossRefGoogle Scholar
- 50.Li B, Zhang B, Nie S et al (2017) J Catal 348:256–264CrossRefGoogle Scholar