Advertisement

Catalysis Letters

, Volume 149, Issue 2, pp 361–372 | Cite as

Shape/Crystal Facet of Ceria Induced Well-Dispersed and Stable Au Nanoparticles for the Selective Hydrogenation of Phenylacetylene

  • Yanan Liu
  • Zhao Yang
  • Xinyi Zhang
  • Yufei He
  • Junting FengEmail author
  • Dianqing Li
Article
  • 28 Downloads

Abstract

A series of CeO2 with the morphology of nanocube (NC), nanopolyhedron (NP) and nanorod (NR) were synthesized by hydrothermal method as substrates to support monometallic Au catalysts. Insight into support morphology-dependent the property of active component and catalytic behavior for the selective hydrogenation of phenylacetylene has been performed. Specifically, nanocube ceria could disperse monometallic Au nanoparticles due to a large amount of low coordinated sites that readily generated the strong interaction for anchoring active metal, whereas the polyhedron and rod-like ceria supported Au nanoparticles possessed large size and wide particle distribution. As expected, well-dispersed and stable Au/CeO2 nanocube demonstrated 83% of selectivity towards styrene when the conversion of phenylacetylene reached 90%, which was much higher than that of others. Preferable activity was mainly ascribed to small size of Au nanoparticles, which facilitated the adsorption/dissociation of hydrogen considered as the rate-determining step. Enhanced selectivity was due to the electronic effect that caused by strong interaction between Au and cubic CeO2, which also contributed to good stability. This work not only provides a facile method for the preparation of highly dispersed and efficient Au/CeO2 catalysts by modulating the morphology of support, but also offers a novel idea for the fabrication of other highly dispersed supported metal catalysts with enhanced behavior in heterogeneous catalysis.

Graphical Abstract

Keywords

Ceria Gold catalyst Support morphology Selective hydrogenation of phenylacetylene 

Notes

Acknowledgements

This work was supported by National Key Research and Development Program of China (2016YFB0301601), the National Natural Science Foundation and the Fundamental Research Funds for the Central Universities (BHYC1701B, JD1816).

Compliance with Ethical Standards

Conflict of interest

We declare that there is no conflict of interest for this work.

References

  1. 1.
    Golubina EV, Lokteva ES, Erokhin AV et al (2016) J Catal 344:90–99CrossRefGoogle Scholar
  2. 2.
    Borodziński A, Bond GC (2006) Catal Rev Sci Eng 48:91–144CrossRefGoogle Scholar
  3. 3.
    Wilhite BA, McCready MJ, Varma A (2002) Ind Eng Chem Res 41:3345–3350CrossRefGoogle Scholar
  4. 4.
    Vysakh AB, Lazar A, Yadukiran V et al (2016) Catal Sci Technol 6:708–712CrossRefGoogle Scholar
  5. 5.
    Szala BJ, Falkowska M, Bowron DT et al (2017) ChemPhysChem 18:2541–2548CrossRefGoogle Scholar
  6. 6.
    Feng JT, Liu YN, Yin M et al (2016) J Catal 344:854–864CrossRefGoogle Scholar
  7. 7.
    Liu Y, He Y, Zhou D et al (2016) Catal Sci Technol 6:3027–3037CrossRefGoogle Scholar
  8. 8.
    Deng D, Yang Y, Gong Y et al (2013) Green Chem 15:2525–2531CrossRefGoogle Scholar
  9. 9.
    Lozano MC, Castillejos E, Bachiller B et al (2015) Catal Today 249:117–126CrossRefGoogle Scholar
  10. 10.
    Zhang X, Shi H, Xu BQ (2011) J Catal 279:75–87CrossRefGoogle Scholar
  11. 11.
    Li M, Wang X, Cárdenas-Lizana F et al (2017) Catal Today 279:19–28CrossRefGoogle Scholar
  12. 12.
    Almora-Barrios N, Cano I, van Leeuwen PW et al (2017) ACS Catal 7:3949–3954CrossRefGoogle Scholar
  13. 13.
    Chen H, Cullen DA, Larese JZ (2015) J Phys Chem C 119:28885–28894CrossRefGoogle Scholar
  14. 14.
    Hao CH, Guo XN, Pan YT et al (2016) J Am Chem Soc 138:9361–9364CrossRefGoogle Scholar
  15. 15.
    Liu X, Mou CY, Lee S et al (2012) J Catal 285:152–159CrossRefGoogle Scholar
  16. 16.
    Mitsudome T, Yamamoto M, Maeno Z et al (2015) J Am Chem Soc 137:13452–13455CrossRefGoogle Scholar
  17. 17.
    Yan X, Bao J, Yuan C et al (2016) J Catal 344:194–201CrossRefGoogle Scholar
  18. 18.
    Yan X, Wheeler J, Jang B et al (2014) Appl Catal A 487:36–44CrossRefGoogle Scholar
  19. 19.
    Edwards JK, Solsona B, Carley AF et al (2009) Science 323:1037–1041CrossRefGoogle Scholar
  20. 20.
    Sudarsanam P, Reddy PS, Großmann D (2014) Appl Catal B 144:900–908CrossRefGoogle Scholar
  21. 21.
    Liu YN, Feng JT, He Y YF et al (2015) Catal Sci Technol 5:1231–1241CrossRefGoogle Scholar
  22. 22.
    He YF, Liu LL, Liu YN et al (2014) J Catal 309:166–173CrossRefGoogle Scholar
  23. 23.
    Delannoy L, Thrimurthulu G, Reddy PS et al (2014) Phys Chem Chem Phys 16:26514–26527CrossRefGoogle Scholar
  24. 24.
    Du X, Zhang D, Shi L et al (2012) J Phys Chem C 116:10009–10016CrossRefGoogle Scholar
  25. 25.
    Chang S, Li M, Hua Q et al (2012) J Catal 293:195–204CrossRefGoogle Scholar
  26. 26.
    Ke J, Xiao J, Zhu W et al (2013) J Am Chem Soc 135:15191–15200CrossRefGoogle Scholar
  27. 27.
    Rodriguez JA, Grinter DC, Liu Z et al (2017) Chem Soc Rev 46:1824–1841CrossRefGoogle Scholar
  28. 28.
    Si R, Flytzani-Stephanopoulos M (2018) Angew Chem Int Ed 47:2884–2887CrossRefGoogle Scholar
  29. 29.
    Wang F, Li C, Zhang X et al (2015) J Catal 329:177–186CrossRefGoogle Scholar
  30. 30.
    Haruta M, Yamada N, Kobayashi T et al (1989) J Catal 115:301–309CrossRefGoogle Scholar
  31. 31.
    Tabakova T, Avgouropoulos G, Papavasiliou J et al (2011) Appl Catal B Environ 101:256–265CrossRefGoogle Scholar
  32. 32.
    Fiorenza R, Crisafulli C, Scire S (2016) Int J Hydrog Energy 41:19390–19398CrossRefGoogle Scholar
  33. 33.
    Fu Q, Weber A, Flytzani-Stephanopoulos M (2001) Catal Lett 77:87–95CrossRefGoogle Scholar
  34. 34.
    Hu Z, Liu X, Meng D et al (2016) ACS Catal 6:2265–2279CrossRefGoogle Scholar
  35. 35.
    Huang XS, Sun H, Wang LC et al (2009) Appl Catal B 90:224–232CrossRefGoogle Scholar
  36. 36.
    Trovarelli A, Llorca J (2017) ACS Catal 7:4716–4735CrossRefGoogle Scholar
  37. 37.
    Mai HX, Sun LD, Zhang YW et al (2005) J Phys Chem B 109:24380–24385CrossRefGoogle Scholar
  38. 38.
    Si R, Flytzani-S M (2008) Angew Chem Int Ed 120:2926–2929CrossRefGoogle Scholar
  39. 39.
    Conesa JC (1995) Surf Sci 339:337–352CrossRefGoogle Scholar
  40. 40.
    Bi QY, Du XL, Liu YM et al (2012) J Am Chem Soc 134:8926–8933CrossRefGoogle Scholar
  41. 41.
    Ma C, Du Y, Feng J et al (2014) J Catal 317:263–271CrossRefGoogle Scholar
  42. 42.
    Ziaei-azad H, Yin CX, Shen J et al (2013) J Catal 300:113–124CrossRefGoogle Scholar
  43. 43.
    Vilé G, Dähler P, Vecchietti J et al (2015) J Catal 324:69–78CrossRefGoogle Scholar
  44. 44.
    Soler L, Casanovas A, Urricha A et al (2016) Appl Catal B 197:47–55CrossRefGoogle Scholar
  45. 45.
    Chen YD, Li CM, Zhou JY et al (2016) ACS Catal 6:2435–2442CrossRefGoogle Scholar
  46. 46.
    Yun S, Lee S, Yook S et al (2015) ACS Catal 5:5756–5765CrossRefGoogle Scholar
  47. 47.
    Nikolaev SA, Smirnov VV (2009) Catal Today 147:336–341CrossRefGoogle Scholar
  48. 48.
    Horiuti I, Polanyi M (1934) Trans Faraday Soc 30:1164–1172CrossRefGoogle Scholar
  49. 49.
    Horiuti I, Polanyi M (1933) Nature 132:819–820CrossRefGoogle Scholar
  50. 50.
    Li B, Zhang B, Nie S et al (2017) J Catal 348:256–264CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical CatalystsBeijing University of Chemical TechnologyBeijingChina

Personalised recommendations