Catalytic Decomposition of Hydrogen-Iodide Over Nanocrystalline Ceria Promoted by Transition Metal Oxides for Hydrogen Production in Sulfur–Iodine Thermo-Chemical Cycle
- 87 Downloads
- 2 Citations
Abstract
In this study, CeO2, and CeO2-M (M=Fe, Co, and Ni) catalysts were prepared by sol–gel method for catalytic decomposition of hydrogen-iodide in sulfur–iodine (SI) cycle. These catalysts sample were characterized by Brunauer–Emmett–Teller (BET), X-ray diffraction (XRD), inductively coupled plasma-atomic emission spectroscopy (ICP-AES), transmission electron microscopy (TEM), and Raman spectroscopy. The powder XRD, and TEM results gave 4–5 nm average size particles of CeO2–Ni-300 sample. BET and Raman results showed a high specific surface area, and large number of oxygen vacancy in the Ni sample. The hydrogen-iodide decomposition experiments were carried out in the temperature range of 400–550 °C in a quartz-tube vertical fixed-bed reactor with 55 wt% HI feed over prepared CeO2-M catalysts using nitrogen as a carrier gas at atmospheric pressure. The experimental hydrogen-iodide decomposition results showed high catalytic activity of Ni sample as compared to Co and Fe samples. They followed the catalytic order: CeO2–Ni-300 > CeO2–Co-300 > CeO2–Fe-300 > CeO2-300. The effect of calcination temperatures (300, 500, and 700 °C) of CeO2–Ni sample (during sol–gel method) on hydrogen-iodide conversion was also studied and showed that the following catalytic order: CeO2–Ni-300 > CeO2–Ni-500 > CeO2–Ni-700. With increase in calcination temperatures the conversion decreased. CeO2–Ni-300 sample also gave a reasonable stability for time-on-stream of about 5 h. So, based on these results, CeO2–Ni-300 is an attractive candidate which has potential for producing large quantity of hydrogen in SI cycle.
Graphical Abstract
Keywords
Hydrogen-iodide decomposition Ceria Transition metal oxides Catalytic activity Hydrogen production Sulfur-iodine cycleNotes
Acknowledgements
The author wants to thank central facility of IIT Delhi, New Delhi, India, for granting access to characterization instruments. This work was supported by ONGC Energy Centre Trust [RP02148], New Delhi, India.
Compliance with Ethical Standards
Conflict of interest
The author declares there is no conflict of interest.
References
- 1.Moka S, Pande M, Rani M, Gakhar R, Sharma M, Rani J, Bhaskarwar AN (2014) Renew Sustain Energy Rev 32:697CrossRefGoogle Scholar
- 2.Singhania A, Bhaskarwar AN, Kale DM, Thomas NJ, Prabhu BN, Bhardwaj A, Bhargava B, Parvatalu D, Banerjee S (2014) IN Patent 2308/DEL/2014Google Scholar
- 3.Singhania A, Bhaskarwar AN, Kale DM, Thomas NJ, Prabhu BN, Bhardwaj A, Bhargava B, Parvatalu D, Banerjee S (2014) IN Patent 2259/DEL/2014Google Scholar
- 4.Roth M, Knoche KF (1989) Int J Hydrog Energy 14:545CrossRefGoogle Scholar
- 5.Kubo S, Nakajima H, Kasahara S, Higashi S, Masaki T, Abe H, Onuki K (2014) Nucl Eng Des 233:347CrossRefGoogle Scholar
- 6.Goldstein S, Borgard JM, Vitart X (2005) Int J Hydrog Energy 30:619CrossRefGoogle Scholar
- 7.Singhania A, Gupta SM (2017) Beilstein J Nanotechnol 8:264CrossRefGoogle Scholar
- 8.Singhania A, Gupta SM (2017) Beilstein J Nanotechnol 8:1546CrossRefGoogle Scholar
- 9.Arrive C, Delahaye T, Joubert O, Gauthier G (2013) J Power Sources 223:341CrossRefGoogle Scholar
- 10.Singhania A, Krishnan VV, Bhaskarwar AN, Bhargava B, Parvatalu D, Banerjee S (2016) Int J Hydrog Energy 41:10538CrossRefGoogle Scholar
- 11.Singhania A, Krishnan VV, Bhaskarwar AN, Bhargava B, Parvatalu D, Banerjee S (2017) Catal Commun 93:5CrossRefGoogle Scholar
- 12.Wang ZC, Wang LJ, Zhang P, Chen SZ, Xu JM, Chen J (2009) Chin Chem Lett 20:102CrossRefGoogle Scholar
- 13.Singhania A, Bhaskarwar AN (2017) Catal Rev 1Google Scholar
- 14.Singhania A, Krishnan VV, Bhaskarwar AN, Bhargava B, Parvatalu D (2017) Int J Hydrog Energy 1Google Scholar
- 15.Tyagi D, Varma S, Bharadwaj SR (2015) Int J Energy Res 39:484CrossRefGoogle Scholar
- 16.O’Keefe DR, Norman JH, Williamson DG (1980) Catal Rev 22:325CrossRefGoogle Scholar
- 17.
- 18.Wang L, Bai S, Wang Z, Zhao Y, Yuan X, Zhang P, Chen S, Xu J, Meng X (2012) Int J Hydrog Energy 37:10020CrossRefGoogle Scholar
- 19.Wang L, Li D, Zhang P, Chen S, Xu J (2012) Int J Hydrog Energy 37:6415CrossRefGoogle Scholar
- 20.Wang L, Han Q, Li D, Wang Z, Chen J, Chen S, Zhang P, Liu B, Wen M, Xu J (2013) Int J Hydrog Energy 38:109CrossRefGoogle Scholar
- 21.Zhang Y, Wang Z, Zhou J, Cen K (2009) Int J Hydrog Energy 34:1688CrossRefGoogle Scholar
- 22.Stefanik TS, Tuller HL (2001) J Eur Ceram Soc 21:1967CrossRefGoogle Scholar
- 23.Yao HC, Yao YFY J Catal 86:254Google Scholar
- 24.Caputo F, De Nicola M, Sienkiewicz A, Giovanetti A, Bejarano I, Licoccia S, Traversa E, Ghibelli L (2015) Nanoscale 7:15643CrossRefGoogle Scholar
- 25.Zhang Y, Wang Z, Zhou J, Liu J, Cen K (2008) Int J Hydrog Energy 33:602CrossRefGoogle Scholar
- 26.Chen Y, Wang Z, Zhang Y, Zhou Z, Cen K (2010) Int J Hydrog Energy 35:445CrossRefGoogle Scholar
- 27.Teng F, Xu P, Tian Z, Xiong G, Xu Y, Xu Z, Lin L (2015) Green Chem 7:493CrossRefGoogle Scholar
- 28.Masson S, Holliman P, Kalaji M, Kluson P (2009) J Mater Chem 19:3517CrossRefGoogle Scholar
- 29.Skaf M, Aouad S, Hany S, Cousin R, Abi-Aad E, Aboukais A (2015) J Catal 320:137CrossRefGoogle Scholar
- 30.Wang H, Zhu JJ, Zhu JM, Liao XH, Xu S, Ding T, Chen HY (2002) Phys Chem Chem Phys 4:3794CrossRefGoogle Scholar
- 31.Santos MLD, Lima RC, Riccardi CS, Tranquilin RL, Bueno PR, Varela JR, Longo E (2008) Mater Lett 62:4509CrossRefGoogle Scholar
- 32.Lin J, Li L, Huang Y, Zhang W, Wang X, Wang A, Zhang T (2011) J Phys Chem C 115:16509CrossRefGoogle Scholar