Advertisement

Catalysis Letters

, Volume 147, Issue 3, pp 704–715 | Cite as

Factors Associated with Accurate Analysis of Fischer–Tropsch Products

  • Kang Xiao
  • Xingzhen Qi
  • Xinxing Wang
  • Dong Lv
  • Mingxiong Zhu
  • Liangshu Zhong
Article

Abstract

Accurate analysis of Fischer–Tropsch (FT) products is very important for reaction mechanism and kinetics studies. However, it is rather complex since many factors in collecting, measurement and GC analysis have influences on the results. These factors should be considered in research to avoid possible artifacts. In this paper, some issues and considerations in FT products analysis were discussed. To obtain reliable results, it is recommended to collect samples after the steady state of the reaction reached without further catalyst reconstruction and net products accumulation. Products collection fraction should be in acceptable range besides commonly calculated balances. The physical separation of different phases of products should be as complete as possible and the identification of different products in GC analysis should be checked carefully.

Graphical Abstract

Keywords

Fischer–Tropsch Products analysis Error study Syngas CO hydrogenation 

Notes

Acknowledgements

This work is financially supported by State Key Fundamental Research Program (Ministry of Science and Technology of China, No. 2011CBA00501), Shanghai Municipal Science, Technology Commission, China (Grant Nos. 11DZ1200300 and 11ZR1436200) and NUPTSF (Grant Nos. NY215016 and NY215079).

References

  1. 1.
    Storch HH, Golumbic N, Anderson RB (1951) The Fischer–Tropsch and related synthesis. Wiley, New YorkGoogle Scholar
  2. 2.
    Anderson RB, Kolbel H, Ralek M (1984) The Fischer–Tropsch synthesis. Academic Press, OrlandoGoogle Scholar
  3. 3.
    Steynberg AP, Dry ME (2004) Fischer–Tropsch technology. Elsevier, BostonGoogle Scholar
  4. 4.
    Schulz H (2003) Top Catal 26:73–85CrossRefGoogle Scholar
  5. 5.
    Botes FG (2008) Catal Rev 50:471–491CrossRefGoogle Scholar
  6. 6.
    Dalai AK, Davis BH (2008) Appl Catal A 348:1–15CrossRefGoogle Scholar
  7. 7.
    Davis BH (2009) Catal Today 141: 25–33CrossRefGoogle Scholar
  8. 8.
    Tsakoumis NE, Ronning M, Borg O, Rytter E, Holmen A (2010) Catal Today 154: 162–182CrossRefGoogle Scholar
  9. 9.
    Sage V, Burke N (2011) Catal Today 178: 137–141CrossRefGoogle Scholar
  10. 10.
    Shetty S, van Santen RA (2011) Catal Today 171: 168–173CrossRefGoogle Scholar
  11. 11.
    Gual A, Godard C, Castillón S, Curulla-Ferré D, Claver C (2012) Catal Today 183: 154–171CrossRefGoogle Scholar
  12. 12.
    Fan GX, Li Y, Yang JL, Xu YY, Xiang HW, Li YW (2007) Chin J Anal Chem 35:1092–1098CrossRefGoogle Scholar
  13. 13.
    Andersson R, Boutonnet M, Järås S (2012) J Chromatogr A 1247:134–145CrossRefPubMedGoogle Scholar
  14. 14.
    Donnelly TJ, Satterfield CN (1989) Appl Catal 56: 231–251CrossRefGoogle Scholar
  15. 15.
    Shi BC, Davis BH (2004) Appl Catal A 277:61–69CrossRefGoogle Scholar
  16. 16.
    Liu Y, Zheng S, Shi B, Li J (2007) J Mol Catal A 276: 110–115CrossRefGoogle Scholar
  17. 17.
    Masuku CM, Shafer WD, Ma W, Gnanamani MK, Jacobs G, Hildebrandt D, Glasser D, Davis BH (2012) J Catal 287: 93–101CrossRefGoogle Scholar
  18. 18.
    Yang J, Shafer WD, Pendyala VRR, Jacobs G, Chen D, Holmen A, Davis BH (2014) Catal Lett 144:524–530CrossRefGoogle Scholar
  19. 19.
    Xiao K, Bao Z, Qi X, Wang X, Zhong L, Fang K, Lin M, Sun Y (2013) J Mol Catal A 378: 319–325CrossRefGoogle Scholar
  20. 20.
    Xiao K, Bao Z, Qi X, Wang X, Zhong L, Lin M, Fang K, Sun Y (2013) Catal Commun 40:154–157CrossRefGoogle Scholar
  21. 21.
    Xiao K, Qi X, Bao Z, Wang X, Zhong L, Fang K, Lin M, Sun Y (2013) Catal Sci Technol 3: 1591–1602CrossRefGoogle Scholar
  22. 22.
    Bao ZH, Xiao K, Qi XZ, Wang XX, Zhong LS, Fang KG, Lin MG, Sun YH (2013) J Energy Chem 22:107–113CrossRefGoogle Scholar
  23. 23.
    Schulz H, Nie ZQ, Ousmanov F (2002) Catal Today 71: 351–360CrossRefGoogle Scholar
  24. 24.
    Schulz H, Schaub G, Claeys M, Riedel T (1999) Appl Catal A 186:215–227CrossRefGoogle Scholar
  25. 25.
    Riedel T, Schulz H, Schaub G, Jun KW, Hwang JS, Lee KW (2003) Top Catal 26:41–54CrossRefGoogle Scholar
  26. 26.
    Wilson J, Degroot C (1995) J Phys Chem 99: 7860–7866CrossRefGoogle Scholar
  27. 27.
    Banerjee A, Navarro V, Frenken JWM, van Bavel AP, Kuipers HPCE, Saeys M (2016) J Phys Chem Lett 7: 1996–2001CrossRefPubMedGoogle Scholar
  28. 28.
    Huff GA, Satterfield CN (1985) Ind Eng Chem Proc Des Dev 24: 986–995CrossRefGoogle Scholar
  29. 29.
    Komaya T, Bell AT (1994) J Catal 146: 237–248CrossRefGoogle Scholar
  30. 30.
    Kuipers EW, Vinkenburg IH, Oosterbeek H (1995) J Catal 152: 137–146CrossRefGoogle Scholar
  31. 31.
    Huff GA, Satterfield CN (1984) J Catal 85: 370–379CrossRefGoogle Scholar
  32. 32.
    Donnelly TJ, Yates IC, Satterfield CN (1988) Energy Fuels 2: 734–739CrossRefGoogle Scholar
  33. 33.
    Matsumoto DK, Satterfield CN (1989) Energy Fuels 3: 249–254CrossRefGoogle Scholar
  34. 34.
    Yang Y, Wang L, Xiao K, Zhao T, Wang H, Zhong L, Sun Y (2015) Catal Sci Technol 5: 4224–4232CrossRefGoogle Scholar
  35. 35.
    Satterfield CN, Hanlon RT, Tung SE, Zou ZM, Papaefthymiou GC (1986) Ind Eng Chem Prod Res Dev 25: 401–407CrossRefGoogle Scholar
  36. 36.
    Dinse A, Aigner M, Ulbrich M, Johnson GR, Bell AT (2012) J Catal 288: 104–114CrossRefGoogle Scholar
  37. 37.
    Bukur DB, Pan Z, Ma W, Jacobs G, Davis BH (2012) Catal Lett 142:1382–1387CrossRefGoogle Scholar
  38. 38.
    Ma W, Jacobs G, Keogh RA, Bukur DB, Davis BH (2012) Appl Catal A 437–438:1–9CrossRefGoogle Scholar
  39. 39.
    Herranz T, Rojas S, Perez-Alonso FJ, Ojeda M, Terreros P, Fierro JLG (2006) J Catal 243: 199–211CrossRefGoogle Scholar
  40. 40.
    Zhang CH, Yang Y, Teng BT, Li TZ, Zheng HY, Xiang HW, Li YW (2006) J Catal 237: 405–415CrossRefGoogle Scholar
  41. 41.
    Davis BH (1992) ACS Div Fuel Chem Preprints 37: 172–183Google Scholar
  42. 42.
    Iglesia E (1997) Appl Catal A 161:59–78CrossRefGoogle Scholar
  43. 43.
    Van der Laan GP, Beenackers A (1999) Catal Rev 41: 255–318Google Scholar
  44. 44.
    Madon RJ, Taylor WF (1981) J Catal 69: 32–43CrossRefGoogle Scholar
  45. 45.
    Patzlaff J, Liu Y, Graffmann C, Gaube J (1999) Appl Catal A 186:109–119CrossRefGoogle Scholar
  46. 46.
    Patzlaff J, Liu Y, Graffmann C, Gaube J (2002) Catal Today 71: 381–394CrossRefGoogle Scholar
  47. 47.
    Gaube J, Klein HF (2010) Appl Catal A 374:120–125CrossRefGoogle Scholar
  48. 48.
    Iglesia E, Reyes SC, Madon RJ (1991) J Catal 129: 238–256CrossRefGoogle Scholar
  49. 49.
    Madon RJ, Reyes SC, Iglesia E (1991) J Phys Chem 95: 7795–7804CrossRefGoogle Scholar
  50. 50.
    Madon RJ, Iglesia E (1993) J Catal 139: 576–590CrossRefGoogle Scholar
  51. 51.
    Schulz H, Vansteen E, Claeys M (1995) Top Catal 2:223–234CrossRefGoogle Scholar
  52. 52.
    Kuipers EW, Scheper C, Wilson JH, Vinkenburg IH, Oosterbeek H (1996) J Catal 158: 288–300CrossRefGoogle Scholar
  53. 53.
    Schulz H, Claeys M (1999) Appl Catal A 186:71–90CrossRefGoogle Scholar
  54. 54.
    Schulz H, Claeys M (1999) Appl Catal A 186:91–107CrossRefGoogle Scholar
  55. 55.
    Bukur DB, Lang XS (1999) Ind Eng Chem Res 38:3270–3275CrossRefGoogle Scholar
  56. 56.
    Donnelly TJ, Satterfield CN (1989) Appl Catal 52: 93–114CrossRefGoogle Scholar
  57. 57.
    Bukur DB, Nowicki L, Lang XS (1995) Energy Fuels 9: 620–629CrossRefGoogle Scholar
  58. 58.
    Ji YY, Xiang HW, Yang JL, Xu YY, Li YW, Zhong B (2001) Appl Catal A 214:77–86CrossRefGoogle Scholar
  59. 59.
    Nijs HH, Jacobs PA (1981) J Chromatogr Sci 19:40–45CrossRefGoogle Scholar
  60. 60.
    Dictor RA, Bell AT (1984) Ind Eng Chem Fundam 23: 252–256CrossRefGoogle Scholar
  61. 61.
    Snavely K, Subramaniam B (1997) Ind Eng Chem Res 36:4413–4420CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Kang Xiao
    • 1
  • Xingzhen Qi
    • 2
  • Xinxing Wang
    • 2
  • Dong Lv
    • 2
  • Mingxiong Zhu
    • 3
  • Liangshu Zhong
    • 2
  1. 1.School of Materials Science & EngineeringNanjing University of Posts and TelecommunicationsNanjingPeople’s Republic of China
  2. 2.CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research InstituteChinese Academy of SciencesShanghaiPeople’s Republic of China
  3. 3.Jiulongpo Environmental Protection Bureau of ChongqingChongqingPeople’s Republic of China

Personalised recommendations