Skip to main content
Log in

Insights into the Reactivity of La1−x Sr x MnO3 (x = 0 ÷ 0.7) in High Temperature N2O Decomposition

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this paper a wide range of La1−x Sr x MnO3 (x = 0–0.7) perovskites was synthesized by Pechini route, characterized by XRD (including high temperature measurements), XPS, differential dissolution phase analysis, TPR H2, oxygen exchange and tested in N2O decomposition at 900 °C. At low degree of Sr substitution for La (x ≤ 0.3), high catalytic activity was found for perovskites with hexagonal structure (x = 0.1–0.2) and can be related to fast oxygen mobility caused by the lattice disordering during polymorphic phase transition from the hexagonal to cubic structure. For multiphase samples (x > 0.3) increase of activity and oxygen mobility can be attributed to the formation of the layer-structured perovskite–LaSrMnO4 on the surface.

Graphical Abstract

Catalytic activity of La–Sr–Mn–O samples in high-temperature N2O decomposition is discussed with emphasis on its relation to oxygen mobility, surface composition and microstructure of the catalyst particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

DDPA:

Differential dissolution phase analysis

References

  1. Ivanov DV, Sadovskaya EM, Pinaeva LG, Isupova LA (2009) J Catal 267(1):5–13

    CAS  Google Scholar 

  2. Yamazoe N, Teraoka Y (1990) Catal Today 8:175–179

    CAS  Google Scholar 

  3. Seyama T (1993) In: Tejuca LG, Fierro JLG (eds) Properties and application of perovskite-type oxides. Marcel Dekker, New York

  4. Ponce S, Pena MA, Fierro JLG (2000) Appl Catal B: Environ 24:193–205

    CAS  Google Scholar 

  5. O’Connel M, Norman AK, Huttermann CF, Morris MA (1999) Catal Today 47:123–132

    Google Scholar 

  6. Kinner SJS, Sayers R, Grimes RW (2005) In: Stammes N et al (eds) Full cell technologies: state and perspectives. Springer, Netherlands

  7. Sase M, Yashiro K, Sato K, Mizusaki J, Kawada T, Sakai N, Yamaji K, Horita T, Yokokawa H (2008) Solid State Ionics 178:1843–1852

    CAS  Google Scholar 

  8. Pechini MP (1967) US Patent no. 3,330,697

  9. Karita R, Kusaba H, Sasaki K, Teraoka Y (2007) Catal Today 126:471–475

    CAS  Google Scholar 

  10. Malakhov VV (2000) J Mol Catal A 158:143–148

    CAS  Google Scholar 

  11. Berger RJ, Kapteijn F, Moulijn JA, Marin GB, Wilde JD, Olea M, Chen D, Holmen A, Lietti L, Tronconi E, Schuurman Y (2008) Appl Catal A: Gen 342:3–28

    CAS  Google Scholar 

  12. Mizutani N, Kitazawa A, Ohkuma N, Kato M (1970) J Chem Soc (Japan) Ind Ed 73:1097–1103

    CAS  Google Scholar 

  13. Cherepanov VA, Barkhatova LYu, Voronin VL (1997) J Solid State Chem 134:38–44

    CAS  Google Scholar 

  14. Majewski P, Epple L, Rozumek M, Schluckwerder H, Aldiner F (2000) J Mater Res 15(5):1161–1166

    CAS  Google Scholar 

  15. Rormark L, Wiik K, Stolen S, Grande T (2002) J Mater Chem 12:1058–1067

    CAS  Google Scholar 

  16. Atsumi T, Kamegashira N (1997) J Alloys Compd 257:161–167

    CAS  Google Scholar 

  17. Andrieux M, Picard C (2000) J Mater Sci Lett 19:695–697

    CAS  Google Scholar 

  18. Kapteijn F, Rodriguez–Mirasol J, Moulijn J (1996) Appl Catal B: Environ 9:25–64

    CAS  Google Scholar 

  19. Sazonov LA, Mosvina ZV, Artamonov EV (1970) Kinet Katal 15:120

    Google Scholar 

  20. Winter ERS (1968) J Chem Soc A 12:2889

    Google Scholar 

  21. Raj SL, Srinivasan V (1980) J Cat 65(1):121

    CAS  Google Scholar 

  22. Winter ERS (1974) J Catal 34:431–439

    CAS  Google Scholar 

  23. Dulli H, Dowben PA, Liou SH, Plummer EW (2000) Phys Rev B 62(22):R14629

    CAS  Google Scholar 

  24. Hirsch PH, Howie A, Nicholson RB, Pashley DW, Whelan MJ (1965) Electron microscopy of thin crystal. Butterworths, London

    Google Scholar 

  25. Isupova LA, Nadeev AN, Yakovleva IS, Tsybulya SV (2007) Kinet Catal 49(1):142–146

    Google Scholar 

  26. Vogt T, Schmahl WW (1993) Europhys Lett 24(4):281–285

    CAS  Google Scholar 

  27. Goodenough JB (2003) In: Gschneidner KA Jr, Bunzli J-CG, Pecharsky VK (eds) Handbook on the physics and chemistry of rare earth, vol 33. Elsevier Science B.V., North-Holland

    Google Scholar 

  28. Li RK, Gleaves C (2000) J Solid State Chem 153:34–40

    CAS  Google Scholar 

  29. Kharton VV, Sobyanin VA, Belyaev VA, Semin GL, Veniaminov SV, Tsipis EV, Yaremchenko AA, Valente AA, Marozau IP, Frade JR, Rocha J (2004) Catal Commun 5(6):311–316

    CAS  Google Scholar 

  30. Yakovleva IS, Isupova LA, Rogov VA, Sadykov VA (2008) Kinet Catal 49:274–283

    Google Scholar 

  31. Ciambelli P, Cimino S, De Rossi S, Faticanti M, Lisi L, Minelli G, Pettiti I, Porta P, Russo G, Turko M (2000) Appl Catal B: Environ 24:243

    CAS  Google Scholar 

  32. Swamy CS, Christopher J (1992) Catal Rev Sci Eng 34(4):409

    CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the contribution of Dr. Ekaterina Sadovskaya for modeling of oxygen exchange, Prof. Sergey Tsybulya for fruitful discussion, Mrs. Nina Kulikovskaya for assistance in samples preparation and Mr. Eugene Gerasimov for XRD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Ivanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov, D.V., Pinaeva, L.G., Isupova, L.A. et al. Insights into the Reactivity of La1−x Sr x MnO3 (x = 0 ÷ 0.7) in High Temperature N2O Decomposition. Catal Lett 141, 322–331 (2011). https://doi.org/10.1007/s10562-010-0503-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-010-0503-0

Keywords

Navigation