Advertisement

Influence of cryopreservation on structure and function of mammalian spermatozoa: an overview

  • Maryam Ezzati
  • Dariush Shanehbandi
  • Kobra Hamdi
  • Sara Rahbar
  • Maryam PashaiaslEmail author
Full Length Review
  • 23 Downloads

Abstract

Cryopreservation is a useful approach to preserve male fertility for assisted reproduction technique and other evaluations. In spite of extensive development in the cryopreservation field, there are biological and biochemical points including DNA fragmentation and antioxidant which should be illuminated to preserve fertility in safe form. Several molecular markers such as coding and noncoding RNAs are transferred from spermatozoa into oocyte via fertilization. These biomarkers affect fertility potential during the cryopreservation. Despite its impact, sperm cryopreservation has some destructive effect including loss of sperm motility and viability, acrosomal damage, mitochondrial membrane depolarization, plasma membrane permeability alteration even nuclear, and DNA damage. There is a growing concern about the impact of sperm cryopreservation on biological factors which can interrupt successful fertility procedures such as in vitro fertilization. Additionally, cryo-damage can decrease embryonic development extent. Promoting cryopreservation method via investigating the wide range of non-invasive factors may be increasingly important to have access to safe approach of freezing. Therefore, the aim of this study is the assessment of biological factors which can penetrate the fertility potential during the freezing procedure, explicate innovative methods in fertility preservation.

Keywords

Cryopreservation Male infertility Biological factor 

Notes

Acknowledgements

This article is in line with Dr. Maryam Ezzati’s thesis about the effect of cryopreservation on male fertility to acquire a Ph.D. in Tabriz Medical University. This study was endorsed by Immunology Research Center, Tabriz University of Medical Sciences, Tabriz/Iran (60961).

Compliane with ethical standards

Conflict of interest

The authors have no conflicts of interest to declare.

References

  1. AbdelHafez F, Bedaiwy M, El-Nashar SA, Sabanegh E, Desai N (2008) Techniques for cryopreservation of individual or small numbers of human spermatozoa: a systematic review. Hum Reprod Update 15:153–164PubMedCrossRefPubMedCentralGoogle Scholar
  2. Aitken RJ, De Iuliis GN, McLachlan RI (2009) Biological and clinical significance of DNA damage in the male germ line. Int J Androl 32:46–56CrossRefGoogle Scholar
  3. Al-Hasani S et al (1999) Pregnancies achieved after frozen–thawed pronuclear oocytes obtained by intracytoplasmic sperm injection with spermatozoa extracted from frozen–thawed testicular tissues from non-obstructive azoospermic men. Hum Reprod 14:2031–2035PubMedCrossRefPubMedCentralGoogle Scholar
  4. Aliakbari F et al (2016) Improving the efficacy of cryopreservation of spermatogonia stem cells by antioxidant supplements. Cell Reprogram 18:87–95CrossRefGoogle Scholar
  5. Alvarez JG, Touchstone JC, Blasco L, Storey BT (1987) Spontaneous lipid peroxidation and production of hydrogen peroxide and superoxide in human spermatozoa Superoxide dismutase as major enzyme protectant against oxygen toxicity. J Androl 8:338–348CrossRefGoogle Scholar
  6. Amor H, Zeyad A, Alkhaled Y, Laqqan M, Saad A, Ben Ali H, Hammadeh M (2018) Relationship between nuclear DNA fragmentation, mitochondrial DNA damage and standard sperm parameters in spermatozoa of fertile and sub-fertile men before and after freeze-thawing procedure. Andrologia 50:e12998PubMedCrossRefPubMedCentralGoogle Scholar
  7. Anzar M, He L, Buhr MM, Kroetsch TG, Pauls KP (2002) Sperm apoptosis in fresh and cryopreserved bull semen detected by flow cytometry and its relationship with fertility. Biol Reprod 66:354–360PubMedCrossRefPubMedCentralGoogle Scholar
  8. Arav A, Yavin S, Zeron Y, Natan D, Dekel I, Gacitua H (2002) New trends in gamete's cryopreservation. Mol Cell Endocrinol 187:77–81PubMedCrossRefPubMedCentralGoogle Scholar
  9. Ashrafi I, Kohram H, Ardabili FF (2013) Antioxidative effects of melatonin on kinetics, microscopic and oxidative parameters of cryopreserved bull spermatozoa. Anim Reprod Sci 139:25–30PubMedCrossRefPubMedCentralGoogle Scholar
  10. Aydin MS, Senturk GE, Ercan F (2013) Cryopreservation increases DNA fragmentation in spermatozoa of smokers. Acta Histochem 115:394–400PubMedCrossRefPubMedCentralGoogle Scholar
  11. Aziz SG-G, Fardyazar Z, Pashaei-Asl F, Rahmati-Yamchi M, Khodadadi K, Pashaiasl M (2018) Human amniotic fluid stem cells (hAFSCs) expressing p21 and cyclin D1 genes retain excellent viability after freezing with (dimethyl sulfoxide) DMSO. Bosn J Basic Med Sci 19:43–51Google Scholar
  12. Bailey JL, Blodeau JF, Cormier N (2000) Semen cryopreservation in domestic animals: a damaging and capacitating phenomenon minireview. J Androl 21:1–7PubMedPubMedCentralGoogle Scholar
  13. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233PubMedPubMedCentralCrossRefGoogle Scholar
  14. Berkovitz A, Miller N, Silberman M, Belenky M, Itsykson P (2018) A novel solution for freezing small numbers of spermatozoa using a sperm vitrification device. Hum Reprod 33:1975–1983PubMedCrossRefPubMedCentralGoogle Scholar
  15. Bevers EM, Comfurius P, Dekkers DW, Zwaal RF (1999) Lipid translocation across the plasma membrane of mammalian cells. Biochim Biophys Acta (BBA) Mol Cell Biol Lipids 1439:317–330CrossRefGoogle Scholar
  16. Biggar KK, Dubuc A, Storey K (2009) MicroRNA regulation below zero: differential expression of miRNA-21 and miRNA-16 during freezing in wood frogs. Cryobiology 59:317–321PubMedCrossRefPubMedCentralGoogle Scholar
  17. Bommer GT et al (2007) p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 17:1298–1307CrossRefGoogle Scholar
  18. Branco CS, Garcez ME, Pasqualotto FF, Erdtman B, Salvador M (2010) Resveratrol and ascorbic acid prevent DNA damage induced by cryopreservation in human semen. Cryobiology 60:235–237PubMedCrossRefPubMedCentralGoogle Scholar
  19. Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM (2003) Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113:25–36PubMedCrossRefPubMedCentralGoogle Scholar
  20. Bushati N, Cohen SM (2007) microRNA functions. Annu Rev Cell Dev Biol 23:175–205PubMedCrossRefPubMedCentralGoogle Scholar
  21. Calamera JC et al (2010) Effect of thawing temperature on the motility recovery of cryopreserved human spermatozoa. Fertil Steril 93:789–794PubMedCrossRefPubMedCentralGoogle Scholar
  22. Capra E et al (2017) Small RNA sequencing of cryopreserved semen from single bull revealed altered miRNAs and piRNAs expression between High-and Low-motile sperm populations. BMC Genom 18:14CrossRefGoogle Scholar
  23. Castro L, Hamilton T, Mendes C, Nichi M, Barnabe V, Visintin J, Assumpção M (2016) Sperm cryodamage occurs after rapid freezing phase: flow cytometry approach and antioxidant enzymes activity at different stages of cryopreservation. J Anim Sci Biotechnol 7:17PubMedPubMedCentralCrossRefGoogle Scholar
  24. Chabory E et al (2009) Epididymis seleno-independent glutathione peroxidase 5 maintains sperm DNA integrity in mice. J Clin Investig 119:2074–2085Google Scholar
  25. Chaudhari D, Dhami A, Hadiya K, Patel J (2015) Relative efficacy of egg yolk and soya milk-based extenders for cryopreservation (− 196 C) of buffalo semen. Vet World 8:239PubMedPubMedCentralCrossRefGoogle Scholar
  26. Consuegra C et al. (2019) Vitrification of large volumes of stallion sperm in comparison with spheres and conventional freezing: effect of warming procedures and sperm selection. J Equine Vet SciGoogle Scholar
  27. Cortés VDLG (2008) Inducción hormonal de la espermiación y criopreservación de esperma en anguila europea (Anguilla anguilla)Google Scholar
  28. Curry E, Ellis S, Pratt S (2009) Detection of porcine sperm microRNAs using a heterologous microRNA microarray and reverse transcriptase polymerase chain reaction. Mol Reprod Dev Inc Gamete Res 76:218–219CrossRefGoogle Scholar
  29. Curry E, Safranski TJ, Pratt SL (2011) Differential expression of porcine sperm microRNAs and their association with sperm morphology and motility. Theriogenology 76:1532–1539CrossRefGoogle Scholar
  30. De Vries K, Wiedmer T, Sims P, Gadella B (2003) Caspase-independent exposure of aminophospholipids and tyrosine phosphorylation in bicarbonate responsive human sperm cells. Biol Reprod 68:2122–2134PubMedCrossRefPubMedCentralGoogle Scholar
  31. DeJarnette JM (2005) The effect of semen quality on reproductive efficiency. Vet Clin Food Anim Pract 21:409–418CrossRefGoogle Scholar
  32. Devireddy R, Swanlund D, Olin T, Vincente W, Troedsson M, Bischof J, Roberts K (2002) Cryopreservation of equine sperm: optimal cooling rates in the presence and absence of cryoprotective agents determined using differential scanning calorimetry. Biol Reprod 66:222–231PubMedCrossRefPubMedCentralGoogle Scholar
  33. Di Santo M, Tarozzi N, Nadalini M, Borini A (2012) Human sperm cryopreservation: update on techniques, effect on DNA integrity, and implications for ART. Adv Urol 2012:854–837Google Scholar
  34. Diedrich K, Fauser B, Devroey P (2011) Cancer and fertility: strategies to preserve fertility. Reprod Biomed Online 22:232–248PubMedCrossRefPubMedCentralGoogle Scholar
  35. Donnelly ET, McClure N, Lewis SE (2001) Cryopreservation of human semen and prepared sperm: effects on motility parameters and DNA integrity. Fertil Steril 76:892–900PubMedCrossRefPubMedCentralGoogle Scholar
  36. Dubuc A, Storey KB (2008) Differential expression of microRNA species in organs of hibernating ground squirrels: a role in translational suppression during torpor. Biochim Biophys Acta (BBA) Gene Regul Mech 1779:628–633Google Scholar
  37. Esau C et al (2004) MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 279:52361–52365PubMedCrossRefGoogle Scholar
  38. Esmaeili V, Shahverdi A, Moghadasian M, Alizadeh A (2015) Dietary fatty acids affect semen quality: a review. Andrology 3:450–461PubMedCrossRefPubMedCentralGoogle Scholar
  39. Feng H (2003) Molecular biology of male infertility. Arch Androl 49:19–27PubMedCrossRefPubMedCentralGoogle Scholar
  40. Friedman RC, Farh KK-H, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105PubMedPubMedCentralCrossRefGoogle Scholar
  41. Gadella B, Harrison R (2002) Capacitation induces cyclic adenosine 3′, 5′-monophosphate-dependent, but apoptosis-unrelated, exposure of aminophospholipids at the apical head plasma membrane of boar sperm cells. Biol Reprod 67:340–350PubMedCrossRefPubMedCentralGoogle Scholar
  42. Gao D, Critser J (2000) Mechanisms of cryoinjury in living cells. ILAR J 41:187–196PubMedCrossRefPubMedCentralGoogle Scholar
  43. García BM et al (2012) Toxicity of glycerol for the stallion spermatozoa: effects on membrane integrity and cytoskeleton, lipid peroxidation and mitochondrial membrane potential. Theriogenology 77:1280–1289CrossRefGoogle Scholar
  44. Gholizadeh-Ghaleh Aziz S, Pashaei-Asl F, Fardyazar Z, Pashaiasl M (2016) Isolation, characterization, cryopreservation of human amniotic stem cells and differentiation to osteogenic and adipogenic cells. PLoS ONE 11:e0158281.  https://doi.org/10.1371/journal.pone.0158281 CrossRefPubMedCentralGoogle Scholar
  45. Gilmore J, Liu J, Gao D, Critser J (1997) Determination of optimal cryoprotectants and procedures for their addition and removal from human spermatozoa. Hum Reprod (Oxf Engl) 12:112–118CrossRefGoogle Scholar
  46. Giraud M, Motta C, Boucher D, Grizard G (2000) Membrane fluidity predicts the outcome of cryopreservation of human spermatozoa. Hum Reprod 15:2160–2164PubMedCrossRefPubMedCentralGoogle Scholar
  47. Glander H (1984) Sperm metabolism, sperm vitality and cryopreservation. Zentralbl Gynakol 106:892–899PubMedPubMedCentralGoogle Scholar
  48. Grunewald S, Paasch U, Said TM, Rasch M, Agarwal A, Glander H-J (2006) Magnetic-activated cell sorting before cryopreservation preserves mitochondrial integrity in human spermatozoa. Cell Tissue Bank 7:99–104PubMedCrossRefPubMedCentralGoogle Scholar
  49. Guthrie H, Welch G, Long J (2008) Mitochondrial function and reactive oxygen species action in relation to boar motility. Theriogenology 70:1209–1215PubMedCrossRefPubMedCentralGoogle Scholar
  50. Hammerstedt RH, Graham JK, Nolan JP (1990) Cryopreservation of mammalian sperm: what we ask them to survive. J Androl 11:73–88PubMedPubMedCentralGoogle Scholar
  51. He Y, Li H, Wang K, Zhang Y, Zhao X (2017) Loss of protein kinase 2 subunit alpha 2 (CK2α’) effect ram sperm function after freezing and thawing process. Anim Reprod Sci 181:9–15PubMedCrossRefPubMedCentralGoogle Scholar
  52. Hovatta O (2003) Cryobiology of ovarian and testicular tissue. Best Pract Res Clin Obstet Gynaecol 17:331–342PubMedCrossRefPubMedCentralGoogle Scholar
  53. Hovatta O, Foudila T, Siegberg R, Johansson K, von Smitten K, Reima D (1996) Case report: pregnancy resulting from intracytoplasmic injection of spermatozoa from a frozen-thawed testicular biopsy specimen. Hum Reprod 11:2472–2473PubMedCrossRefPubMedCentralGoogle Scholar
  54. Huang S, Li H, Ding X, Xiong C (2009) Presence and characterization of cell-free seminal RNA in healthy individuals: implications for noninvasive disease diagnosis and gene expression studies of the male reproductive system. Clin Chem 55:1967–1976PubMedCrossRefPubMedCentralGoogle Scholar
  55. Isachenko E, Isachenko V, Katkov II, Dessole S, Nawroth F (2003) Vitrification of mammalian spermatozoa in the absence of cryoprotectants: from past practical difficulties to present success. Reprod Biomed Online 6:191–200PubMedCrossRefPubMedCentralGoogle Scholar
  56. Isachenko V et al (2011) Cryoprotectant-free vitrification of human spermatozoa in large (up to 0.5 mL) volume: a novel technology. Clin Lab 57:643–650PubMedPubMedCentralGoogle Scholar
  57. Izadyar F, Matthijs‐Rijsenbilt J, Den Ouden K, Creemers LB, Woelders H, de Rooij DG (2002) Development of a cryopreservation protocol for type A spermatogonia. J Androl 23:537–545PubMedPubMedCentralGoogle Scholar
  58. Jahnukainen K, Ehmcke J, Hou M, Schlatt S (2011) Testicular function and fertility preservation in male cancer patients Best practice & research. Clin Endocrinol Metab 25:287–302Google Scholar
  59. Jenkins TG, Aston KI, Carrell DT (2011) Supplementation of cryomedium with ascorbic acid–2-glucoside (AA2G) improves human sperm post-thaw motility. Fertil Steril 95:2001–2004PubMedCrossRefPubMedCentralGoogle Scholar
  60. Jeyendran RS, Acosta VC, Land S, Coulam CB (2008) Cryopreservation of human sperm in a lecithin-supplemented freezing medium. Fertil Steril 90:1263–1265PubMedCrossRefPubMedCentralGoogle Scholar
  61. Kalthur G, Raj S, Thiyagarajan A, Kumar S, Kumar P, Adiga SK (2011) Vitamin E supplementation in semen-freezing medium improves the motility and protects sperm from freeze-thaw–induced DNA damage. Fertil Steril 95:1149–1151PubMedCrossRefPubMedCentralGoogle Scholar
  62. Katepogu K, Chittor P, Kurumala D, Mallepogu V, Kamity V, Kedam TR (2013) Freeze and thaw creates oxidative stress and DNA damage in frozen human spermatozoa Indo. Am J Pharm Res 3:7184–7191Google Scholar
  63. Keros V, Rosenlund B, Hultenby K, Aghajanova L, Levkov L, Hovatta O (2005) Optimizing cryopreservation of human testicular tissue: comparison of protocols with glycerol, propanediol and dimethylsulphoxide as cryoprotectants. Hum Reprod 20:1676–1687PubMedCrossRefPubMedCentralGoogle Scholar
  64. Kloosterman WP, Plasterk RH (2006) The diverse functions of microRNAs in animal development and disease. Dev Cell 11:441–450PubMedCrossRefPubMedCentralGoogle Scholar
  65. Kotdawala AP et al (2012) Addition of zinc to human ejaculate prior to cryopreservation prevents freeze-thaw-induced DNA damage and preserves sperm function. J Assist Reprod Genet 29:1447–1453PubMedPubMedCentralCrossRefGoogle Scholar
  66. Kothari S, Thompson A, Agarwal A, du Plessis SS (2010) Free radicals: their beneficial and detrimental effects on sperm function. Indian J Exp Biol 48:425–435PubMedPubMedCentralGoogle Scholar
  67. Kubota H, Avarbock MR, Brinster RL (2004) Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc Natl Acad Sci 101:16489–16494PubMedCrossRefPubMedCentralGoogle Scholar
  68. Lasso JL, Noiles EE, Alvarez JG, Storey BT (1994) Mechanism of superoxide dismutase loss from human sperm cells during cryopreservation. J Androl 15:255–265PubMedPubMedCentralGoogle Scholar
  69. Lee Y-A et al (2013) Cryopreservation of mouse spermatogonial stem cells in dimethylsulfoxide and polyethylene glycol. Biol Reprod 89(109):101–109Google Scholar
  70. Leffers H, Andersson A, Juul A, Carlsen E, Mortensen G, Jensen T, Toppari J (2006) Is human fecundity declining. Int J Androl 29:211Google Scholar
  71. Lemaire-Ewing S, Desrumaux C, Néel D, Lagrost L (2010) Vitamin E transport, membrane incorporation and cell metabolism: Is α-tocopherol in lipid rafts an oar in the lifeboat? Mol Nutr Food Res 54:631–640PubMedCrossRefPubMedCentralGoogle Scholar
  72. Lewis SE (2007) Is sperm evaluation useful in predicting human fertility? Reproduction 134:31–40PubMedCrossRefPubMedCentralGoogle Scholar
  73. Li P et al (2010) Ice-age endurance: the effects of cryopreservation on proteins of sperm of common carp, Cyprinus carpio L. Theriogenology 74:413–423PubMedCrossRefPubMedCentralGoogle Scholar
  74. Li P, Li Z-H, Dzyuba B, Hulak M, Rodina M, Linhart O (2010) Evaluating the impacts of osmotic and oxidative stress on common carp (Cyprinus carpio, L.) sperm caused by cryopreservation techniques. Biol Reprod 83:852–858PubMedCrossRefPubMedCentralGoogle Scholar
  75. Lian J et al (2009) Altered microRNA expression in patients with non-obstructive azoospermia. Reprod Biol Endocrinol 7:13PubMedPubMedCentralCrossRefGoogle Scholar
  76. Liu T et al (2016) The effect of two cryopreservation methods on human sperm DNA damage. Cryobiology 72:210–215PubMedCrossRefPubMedCentralGoogle Scholar
  77. Love C, Brinsko S, Rigby S, Thompson J, Blanchard T, Varner D (2005) Relationship of seminal plasma level and extender type to sperm motility and DNA integrity. Theriogenology 63:1584–1591PubMedCrossRefPubMedCentralGoogle Scholar
  78. Lovelock J (1953) The haemolysis of human red blood-cells by freezing and thawing. Biochem Biophys Acta 10:414–426PubMedCrossRefPubMedCentralGoogle Scholar
  79. Luyet BJ, Hodapp EL (1938) Revival of frog's spermatozoa vitrified in liquid air. Proc Soc Exp Biol Med 39:433–434CrossRefGoogle Scholar
  80. Lyons PJ, Lang-Ouellette D (2013) CryomiRs: towards the identification of a cold-associated family of microRNAs. Comp Biochem Physiol D Genom Proteom 8:358–364Google Scholar
  81. Magnes L, Li T (1980) Isolation and properties of superoxide dismutase from bovine spermatozoa. Biol Reprod 22:965–969CrossRefGoogle Scholar
  82. Maldjian A, Pizzi F, Gliozzi T, Cerolini S, Penny P, Noble R (2005) Changes in sperm quality and lipid composition during cryopreservation of boar semen. Theriogenology 63:411–421CrossRefGoogle Scholar
  83. Mann T, Lutwak-Mann C (2012) Male reproductive function and semen: themes and trends in physiology, biochemistry and investigative andrology. Springer, New YorkGoogle Scholar
  84. Mansilla M, Merino O, Risopatron J, Isachenko V, Isachenko E, Sanchez R (2016) High temperature is essential for preserved human sperm function during the devitrification process. Andrologia 48:111–113PubMedCrossRefPubMedCentralGoogle Scholar
  85. Martin G, Sabido O, Durand P, Levy R (2004) Cryopreservation induces an apoptosis-like mechanism in bull sperm. Biol Reprod 71:28–37PubMedCrossRefPubMedCentralGoogle Scholar
  86. Martinez C et al (2019) High pre-freezing sperm dilution improves monospermy without affecting the penetration rate in porcine IVF. Theriogenology 131:162–168PubMedCrossRefPubMedCentralGoogle Scholar
  87. Mazur P, Seki S (2011) Survival of mouse oocytes after being cooled in a vitrification solution to− 196 C at 95 to 70,000 C/min and warmed at 610 to 118,000 C/min: A new paradigm for cryopreservation by vitrification. Cryobiology 62:1–7CrossRefGoogle Scholar
  88. Mazzilli F, Rossi T, Sabatini L, Pulcinelli F, Rapone S, Dondero F, Gazzaniga P (1995) Human sperm cryopreservation and reactive oxygen species (ROS) production. Acta Eur Fertil 26:145–148PubMedPubMedCentralGoogle Scholar
  89. McLaughlin E, Ford W, Hull M (1994) Adenosine triphosphate and motility characteristics of fresh and cryopreserved human spermatozoa. Int J Androl 17:19–23PubMedCrossRefPubMedCentralGoogle Scholar
  90. Meamar M et al (2012) Sperm DNA fragmentation induced by cryopreservation: new insights and effect of a natural extract from Opuntia ficus-indica. Fertil Steril 98:326–333PubMedCrossRefPubMedCentralGoogle Scholar
  91. Melo C et al. (2008) Comparison of three different extenders for freezing epididymal stallion sperm. Anim Reproduction Science:331–331CrossRefGoogle Scholar
  92. Miller C (2008) Optimizing the use of frozen–thawed equine semen. Theriogenology 70:463–468CrossRefGoogle Scholar
  93. Mirzapour T, Movahedin M, Tengku Ibrahim T, Haron A, Nowroozi M (2013) Evaluation of the effects of cryopreservation on viability, proliferation and colony formation of human spermatogonial stem cells in vitro culture. Andrologia 45:26–34PubMedCrossRefPubMedCentralGoogle Scholar
  94. Mishima T et al (2008) MicroRNA (miRNA) cloning analysis reveals sex differences in miRNA expression profiles between adult mouse testis and ovary. Reproduction 136:811–822CrossRefGoogle Scholar
  95. Mohaqiq M, Movahedin M, Mazaheri Z, Amirjannati N (2019) In vitro transplantation of spermatogonial stem cells isolated from human frozen–thawed testis tissue can induce spermatogenesis under 3-dimensional tissue culture conditions. Biol Res 52:16PubMedPubMedCentralCrossRefGoogle Scholar
  96. Morris GJ, Acton E, Murray BJ, Fonseca F (2012) Freezing injury: the special case of the sperm cell. Cryobiology 64:71–80CrossRefGoogle Scholar
  97. Moskwa P et al (2011) miR-182-mediated downregulation of BRCA1 impacts DNA repair and sensitivity to PARP inhibitors. Mol Cell 41:210–220PubMedCrossRefPubMedCentralGoogle Scholar
  98. Moustafa MH, Sharma RK, Thornton J, Mascha E, Abdel-Hafez MA, Thomas AJ, Agarwal A (2004) Relationship between ROS production, apoptosis and DNA denaturation in spermatozoa from patients examined for infertility. Hum Reprod 19:129–138PubMedCrossRefPubMedCentralGoogle Scholar
  99. Najafi A et al (2018) Melatonin affects membrane integrity, intracellular reactive oxygen species, caspase3 activity and AKT phosphorylation in frozen thawed human sperm. Cell Tissue Res 372:149–159PubMedCrossRefPubMedCentralGoogle Scholar
  100. O'connell M, McClure N, Lewis S (2002) The effects of cryopreservation on sperm morphology, motility and mitochondrial function. Hum Reprod 17:704–709PubMedCrossRefPubMedCentralGoogle Scholar
  101. Oettle E, Soley J (1986) Ultrastructural changes in the acrosome of human sperm during freezing and thawing: a pilot trial. Arch Androl 17:145–150PubMedCrossRefPubMedCentralGoogle Scholar
  102. O'flaherty C, de Lamirande E, Gagnon C (2006) Positive role of reactive oxygen species in mammalian sperm capacitation: triggering and modulation of phosphorylation events. Free Radical Biol Med 41:528–540CrossRefGoogle Scholar
  103. Okada H, Tajima A, Shichiri K, Tanaka A, Tanaka K, Inoue I (2008) Genome-wide expression of azoospermia testes demonstrates a specific profile and implicates ART3 in genetic susceptibility. PLoS Genet 4:e26PubMedCentralCrossRefGoogle Scholar
  104. Paasch U, Grunewald S, Agarwal A, Glandera H-J (2004a) Activation pattern of caspases in human spermatozoa. Fertil Steril 81:802–809PubMedCrossRefPubMedCentralGoogle Scholar
  105. Paasch U et al (2004b) Cryopreservation and thawing is associated with varying extent of activation of apoptotic machinery in subsets of ejaculated human spermatozoa. Biol Reprod 71:1828–1837PubMedCrossRefPubMedCentralGoogle Scholar
  106. Papa FO, Melo C, Fioratti E, Dell’Aqua J Jr, Zahn F, Alvarenga MA (2008) Freezing of stallion epididymal sperm. Anim Reprod Sci 107:293–301PubMedCrossRefPubMedCentralGoogle Scholar
  107. Pashaiasl M, Khodadadi K, Richings NM, Holland MK, Verma PJ (2013) Cryopreservation and long-term maintenance of bovine embryo-derived cell lines. Reprod Fertil Dev 25:707–718PubMedCrossRefPubMedCentralGoogle Scholar
  108. Paynter S, Cooper A, Gregory L, Fuller B, Shaw R (1999) Permeability characteristics of human oocytes in the presence of the cryoprotectant dimethylsulphoxide. Hum Reprod 14:2338–2342PubMedCrossRefPubMedCentralGoogle Scholar
  109. Peris SI, Bilodeau JF, Dufour M, Bailey JL (2007) Impact of cryopreservation and reactive oxygen species on DNA integrity, lipid peroxidation, and functional parameters in ram sperm. Mol Reprod Dev 74:878–892PubMedCrossRefPubMedCentralGoogle Scholar
  110. Polge C, Smith AU, Parkes AS (1949) Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature 164:666CrossRefGoogle Scholar
  111. Pradiee J, Esteso M, Castaño C, Toledano-Díaz A, Lopez-Sebastián A, Guerra R, Santiago-Moreno J (2017) Conventional slow freezing cryopreserves mouflon spermatozoa better than vitrification. Andrologia 49:e12629CrossRefGoogle Scholar
  112. Rahbar S et al (2017) New insights into the expression profile of MicroRNA-34c and P53 in infertile men spermatozoa and testicular tissue. Cell Mol Biol (Noisy-le-Grand France) 63:77–83PubMedCrossRefPubMedCentralGoogle Scholar
  113. Redden E et al (2009) Large quantity cryopreservation of bovine testicular cells and its effect on enrichment of type A spermatogonia. Cryobiology 58:190–195PubMedCrossRefPubMedCentralGoogle Scholar
  114. Reiter RJ, Tan D-X, Manchester LC, Paredes SD, Mayo JC, Sainz RM (2009) Melatonin and reproduction revisited. Biol Reprod 81:445–456PubMedCrossRefPubMedCentralGoogle Scholar
  115. Roelen B (2010) An overview on the diversity of cellular organelles during the germ cell cycle. Histol Histopathol 25:267–276PubMedPubMedCentralGoogle Scholar
  116. Saacke R, Nadir S, Nebel R (1994) Relationship of semen quality to sperm transport, fertilization, and embryo quality in ruminants. Theriogenology 41:45–50CrossRefGoogle Scholar
  117. Said TM, Gaglani A, Agarwal A (2010) Implication of apoptosis in sperm cryoinjury. Reprod Biomed Online 21:456–462PubMedCrossRefPubMedCentralGoogle Scholar
  118. Sánchez R, Risopatrón J, Schulz M, Villegas J, Isachenko V, Kreinberg R, Isachenko E (2011) Canine sperm vitrification with sucrose: effect on sperm function. Andrologia 43:233–241PubMedCrossRefPubMedCentralGoogle Scholar
  119. Santos JH, Meyer JN, Mandavilli BS, Van Houten B (2006) Quantitative PCR-based measurement of nuclear and mitochondrial DNA damage and repair in mammalian cells. In: Bjergbæk L (ed) DNA repair protocols. Springer, New York, pp 183–199CrossRefGoogle Scholar
  120. Schiller J, Arnhold J, Glander H-J, Arnold K (2000) Lipid analysis of human spermatozoa and seminal plasma by MALDI-TOF mass spectrometry and NMR spectroscopy—effects of freezing and thawing. Chem Phys Lipid 106:145–156CrossRefGoogle Scholar
  121. Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455:58CrossRefGoogle Scholar
  122. Serafini PC, Hauser D, Moyer D, Marrs RP (1986) Cryopreservation of human spermatozoa: correlations of ultrastructural sperm head configuration with sperm motility and ability to penetrate zona-free hamster ova. Fertil Steril 46:691–695PubMedCrossRefPubMedCentralGoogle Scholar
  123. Serafini R, Varner D, Blanchard T, Teague S, LaCaze K, Love C (2018) Effects of seminal plasma and flash-freezing on DNA structure of stallion epididymal sperm exposed to different potentiators of DNA damage. Theriogenology 117:34–39CrossRefGoogle Scholar
  124. Shahverdi A et al (2015) Fertility and flow cytometric evaluations of frozen-thawed rooster semen in cryopreservation medium containing low-density lipoprotein. Theriogenology 83:78–85PubMedCrossRefPubMedCentralGoogle Scholar
  125. Shaman JA, Ward WS (2006) Sperm chromatin stability and susceptibility to damage in relation to its structure. In: The sperm cell: production, maturation, fertilization and regeneration, pp 31–48Google Scholar
  126. Sherman JK (1964) Research on frozen human semen: past, present, and future. Fertil Steril 15:485–500PubMedCrossRefPubMedCentralGoogle Scholar
  127. Sherman J (1968) Practical applications and technical problems of preserving spermatozoa by freezing. In: Federation proceedings, pp S288–S296Google Scholar
  128. Sherman JK (1973) Synopsis of the use of frozen human semen since 1964: state of the art of human semen banking. Fertil Steril 24:397CrossRefGoogle Scholar
  129. Shetty G et al (2013) Hormone suppression with GnRH antagonist promotes spermatogenic recovery from transplanted spermatogonial stem cells in irradiated cynomolgus monkeys. Andrology 1:886–898PubMedPubMedCentralCrossRefGoogle Scholar
  130. Silva E, Cajueiro J, Silva S, Soares P, Guerra M (2012) Effect of antioxidants resveratrol and quercetin on in vitro evaluation of frozen ram sperm. Theriogenology 77:1722–1726PubMedCrossRefPubMedCentralGoogle Scholar
  131. Sion B, Janny L, Boucher D, Grizard G (2004) Annexin V binding to plasma membrane predicts the quality of human cryopreserved spermatozoa. Int J Androl 27:108–114PubMedCrossRefPubMedCentralGoogle Scholar
  132. Siu AW, Maldonado M, Sanchez-Hidalgo M, Tan DX, Reiter RJ (2006) Protective effects of melatonin in experimental free radical-related ocular diseases. J Pineal Res 40:101–109PubMedCrossRefPubMedCentralGoogle Scholar
  133. Slabbert M, Du Plessis S, Huyser C (2015) Large volume cryoprotectant-free vitrification: an alternative to conventional cryopreservation for human spermatozoa. Andrologia 47:594–599PubMedCrossRefPubMedCentralGoogle Scholar
  134. Słowińska M, Karol H, Ciereszko A (2008) Comet assay of fresh and cryopreserved bull spermatozoa. Cryobiology 56:100–102PubMedCrossRefPubMedCentralGoogle Scholar
  135. Storey KB, Storey JM (1986) Freeze tolerance and intolerance as strategies of winter survival in terrestrially-hibernating amphibians. Comp Biochem Physiol A Comp Physiol 83:613–617PubMedCrossRefPubMedCentralGoogle Scholar
  136. Storey KB, Storey JM (2013) Molecular biology of freezing tolerance. Compr Physiol 3:1283–1308PubMedPubMedCentralGoogle Scholar
  137. Tahmasbpour E, Balasubramanian D, Agarwal A (2014) A multi-faceted approach to understanding male infertility: gene mutations, molecular defects and assisted reproductive techniques (ART). J Assist Reprod Genet 31:1115–1137PubMedCentralCrossRefGoogle Scholar
  138. Tatone C, Di Emidio G, Vento M, Ciriminna R, Artini PG (2010) Cryopreservation and oxidative stress in reproductive cells. Gynecol Endocrinol 26:563–567PubMedCrossRefPubMedCentralGoogle Scholar
  139. Taylor K, Roberts P, Sanders K, Burton P (2009) Effect of antioxidant supplementation of cryopreservation medium on post-thaw integrity of human spermatozoa. Reprod Biomed Online 18:184–189PubMedCrossRefPubMedCentralGoogle Scholar
  140. Thomson LK, Fleming SD, Aitken RJ, De Iuliis GN, Zieschang J-A, Clark AM (2009) Cryopreservation-induced human sperm DNA damage is predominantly mediated by oxidative stress rather than apoptosis. Hum Reprod 24:2061–2070PubMedCrossRefPubMedCentralGoogle Scholar
  141. Thuwanut P, Chatdarong K, Johannisson A, Bergqvist A-S, Söderquist L, Axnér E (2010) Cryopreservation of epididymal cat spermatozoa: effects of in vitro antioxidative enzymes supplementation and lipid peroxidation induction. Theriogenology 73:1076–1087CrossRefGoogle Scholar
  142. Tremellen K (2008) Oxidative stress and male infertility—a clinical perspective. Hum Reprod Update 14:243–258PubMedCrossRefPubMedCentralGoogle Scholar
  143. Valko M, Rhodes C, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40CrossRefGoogle Scholar
  144. van Overveld FW, Haenen GR, Rhemrev J, Vermeiden JP, Bast A (2000) Tyrosine as important contributor to the antioxidant capacity of seminal plasma. Chem Biol Interact 127:151–161PubMedCrossRefPubMedCentralGoogle Scholar
  145. Volonté D, Galbiati F, Pestell RG, Lisanti MP (2001) Cellular stress induces the tyrosine phosphorylation of caveolin-1 (Tyr14) via activation of p38 mitogen-activated protein kinase and c-Src kinase evidence for caveolae, the actin cytoskeleton, and focal adhesions as mechanical sensors of osmotic stress. J Biol Chem 276:8094–8103PubMedCrossRefPubMedCentralGoogle Scholar
  146. Wang X, Sharma RK, Sikka SC, Thomas AJ Jr, Falcone T, Agarwal A (2003) Oxidative stress is associated with increased apoptosis leading to spermatozoa DNA damage in patients with male factor infertility. Fertil Steril 80:531–535PubMedCrossRefPubMedCentralGoogle Scholar
  147. Ward WS, Coffey D (1991) DNA packaging and organization in mammalian spermatozoa: comparison with somatic cells. Biol Reprod 44:569–574PubMedCrossRefPubMedCentralGoogle Scholar
  148. Watson P (2000) The causes of reduced fertility with cryopreserved semen. Anim Reprod Sci 60:481–492CrossRefGoogle Scholar
  149. White I (1993) Lipids and calcium uptake of sperm in relation to cold shock and preservation: a review. Reprod Fertil Dev 5:639–658PubMedCrossRefPubMedCentralGoogle Scholar
  150. Whittingham D (1971) Survival of mouse embryos after freezing and thawing. Nature 233:125PubMedCrossRefPubMedCentralGoogle Scholar
  151. Winterbone MS, Sampson MJ, Saha S, Hughes JC, Hughes DA (2007) Pro-oxidant effect of α-tocopherol in patients with Type 2 Diabetes after an oral glucose tolerance test–a randomised controlled trial. Cardiovasc Diabetol 6:8PubMedPubMedCentralCrossRefGoogle Scholar
  152. World Health Organization (1999) WHO laboratory manual for the examination of human semen and sperm-cervical mucus interaction. Cambridge University Press, CambridgeGoogle Scholar
  153. World Health Organization (2010) WHO laboratory manual for the examination and processing of human semen. WHO, GenevaGoogle Scholar
  154. Wu X, Goodyear SM, Abramowitz LK, Bartolomei MS, Tobias JW, Avarbock MR, Brinster RL (2012) Fertile offspring derived from mouse spermatogonial stem cells cryopreserved for more than 14 years. Hum Reprod 27:1249–1259PubMedPubMedCentralCrossRefGoogle Scholar
  155. Xia H-F, Jin X-H, Cao Z-F, Shi T, Ma X (2014) MiR-98 is involved in rat embryo implantation by targeting Bcl-xl. FEBS Lett 588:574–583PubMedCrossRefPubMedCentralGoogle Scholar
  156. Yousef M, Abdallah G, Kamel K (2003) Effect of ascorbic acid and vitamin E supplementation on semen quality and biochemical parameters of male rabbits. Anim Reprod Sci 76:99–111PubMedCrossRefPubMedCentralGoogle Scholar
  157. Zeke J, Konc J, Kanyo K, Kriston R, Cseh S (2012) Birth and clinical pregnancy from fresh and frozen oocytes fertilized with cryopreserved testicular spermatozoa. Syst Biol Reprod Med 58:165–167PubMedCrossRefPubMedCentralGoogle Scholar
  158. Zeng C, He L, Peng W, Ding L, Tang K, Fang D, Zhang Y (2014) Selection of optimal reference genes for quantitative RT-PCR studies of boar spermatozoa cryopreservation. Cryobiology 68:113–121PubMedCrossRefPubMedCentralGoogle Scholar
  159. Zhang DX, Gutterman DD (2007) Mitochondrial reactive oxygen species-mediated signaling in endothelial cells. Am J Physiol Heart Circ Physiol 292:H2023–H2031PubMedPubMedCentralCrossRefGoogle Scholar
  160. Zhang Y, Zeng C-J, He L, Ding L, Tang K-Y, Peng W-P (2015) Selection of endogenous reference microRNA genes for quantitative reverse transcription polymerase chain reaction studies of boar spermatozoa cryopreservation. Theriogenology 83:634–641PubMedCrossRefPubMedCentralGoogle Scholar
  161. Zhang Y et al (2017) Cryopreservation of boar sperm induces differential microRNAs expression. Cryobiology 76:24–33PubMedCrossRefGoogle Scholar
  162. Zingg J-M (2007) Vitamin E: an overview of major research directions. Mol Asp Med 28:400–422CrossRefGoogle Scholar
  163. Zribi N et al (2012) Effect of freezing–thawing process and quercetin on human sperm survival and DNA integrity. Cryobiology 65:326–331PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Immunology Research CenterTabriz University of Medical SciencesTabrizIran
  2. 2.Department of Anatomical Sciences, Faculty of MedicineTabriz University of Medical SciencesTabrizIran
  3. 3.Women’s Reproductive Health Research CenterTabriz University of Medical SciencesTabrizIran
  4. 4.Department of Biology and Anatomical Sciences, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
  5. 5.Department of Reproductive Biology, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran

Personalised recommendations