Cell and Tissue Banking

, Volume 19, Issue 4, pp 549–558 | Cite as

Tsmu solution improves rabbit osteochondral allograft preservation and transplantation outcome

  • Famin Cao
  • Jianhong QiEmail author
  • Hongqiang Song
  • Di Xie
  • Lu Zhou
  • Yunning Han
  • Hao Li
  • Qi Wu
  • Jun Dong
  • Yanming Zhang


To compare the effects of Tsmu solution with vitrification on chondrocyte viability and examine histological and biomechanical properties of osteochondral allografts (OCAs) after storage, OCAs from femoral condyles of New Zealand rabbits were harvested, stored for 35 days in Tsmu solution or by in vitro vitrification, and subjected to in vivo and in vitro assays. Stored OCAs were transplanted into knee femoral condyle cartilage defects in recipient rabbits. Chondrocyte viability and histological changes of cartilage grafts were assessed in vitro. Gross assessment, chondrocyte viability, histological assessment, OCA biomechanics, and immunological markers were evaluated in vivo 6 months after transplantation. Fresh OCAs served as in vitro and in vivo controls. Chondrocyte viability and scores for cartilage surface and histological quantitative assessment were superior for Tsmu solution compared with vitrification, but inferior compared with fresh OCAs in vitro and in vivo. With the exception of interleukin 6 content, biomechanical features of samples stored in Tsmu solution were superior to vitrification, and inferior to fresh OCAs in vivo. Thus, Tsmu solution provided suitable storage that improved chondrocyte viability, intact OCA cartilage matrix architecture, and transplantation outcomes.


Osteochondral allografts Tissue bank Culture solution Vitrification Implantation Chondrocyte viability 



The authors would like to thank Mrs. Qiuling Zhang for her invaluable assistance, and Amy Van Deusen from Liwen Bianji, Edanz Group China (, for editing the English text of a draft of this manuscript.


This work was supported by the Shandong Provincial Natural Science Foundation of China [Grant Numbers ZR2013HM034 and ZR2017LH018] and the Projects of Medical and Health Technology Development Program in Shandong Province [Grant Number 2015WS0109 and 2013WS0317].

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.


  1. Bian L, Stoker AM, Marberry KM, Ateshian GA, Cook JL, Hung CT (2010) Effects of dexamethasone on the functional properties of cartilage explants during long-term culture. Am J Sports Med 38(1):78–85CrossRefPubMedGoogle Scholar
  2. Bugbee WD, Pallante-Kichura AL, Görtz S, Amiel D, Sah R (2016) Osteochondral allograft transplantation in cartilage repair: graft storage paradigm, translational models, and clinical applications. J Orthop Res 34(1):31–38CrossRefPubMedGoogle Scholar
  3. Cameron JI, Pulido PA, McCauley JC, Bugbee WD (2016) Osteochondral allograft transplantation of the femoral trochlea. Am J Sports Med 44(3):633–638CrossRefPubMedGoogle Scholar
  4. Campbell J, Filardo G, Bruce B, Bajaj S, Friel N, Hakimiyan A, Wood S, Grumet R, Shafikhani S, Chubinskaya S, Cole BJ (2014) Salvage of contaminated osteochondral allografts: the effects of chlorhexidine on human articular chondrocyte viability. Am J Sports Med 42(4):973–978CrossRefPubMedGoogle Scholar
  5. Cook JL, Stoker AM, Stannard JP, Kuroki K, Cook CR, Pfeiffer FM, Bozynski C, Hung CT (2014) A novel system improves preservation of osteochondral allografts. Clin Orthop Relat Res 472(11):3404–3414CrossRefPubMedPubMedCentralGoogle Scholar
  6. Ding L, Zampogna B, Vasta S, Jang KW, De Caro F, Martin JA, Amendola A (2015) Why do osteochondral allografts survive? Comparative analysis of cartilage biochemical properties unveils a molecular basis for durability. Am J Sports Med 43(10):2459–2468CrossRefPubMedPubMedCentralGoogle Scholar
  7. El Bitar YF, Lindner D, Jackson TJ, Domb BG (2014) Joint-preserving surgical options for management of chondral injuries of the hip. J Am Acad Orthop Surg 22(1):46–56CrossRefPubMedGoogle Scholar
  8. Forriol F, Longo UG, Alvarez E, Campi S, Ripalda P, Rabitti C, Maffulli N, Denaro V (2011) Scanty integration of osteochondral allografts cryopreserved at low temperatures with dimethyl sulfoxide. Knee Surg Sports Traumatol Arthrosc 19(7):1184–1191CrossRefPubMedGoogle Scholar
  9. Glenn RE Jr, McCarty EC, Potter HG, Juliao SF, Gordon JD, Spindler KP (2006) Comparison of fresh osteochondral autografts and allografts: a canine model. Am J Sports Med 34(7):1084–1093CrossRefPubMedGoogle Scholar
  10. Hayashi M, Tsuchiya H, Otoi T, Agung B, Yamamoto N, Tomita K (2009) Influence of freezing with liquid nitrogen on whole-knee joint grafts and protection of cartilage from cryoinjury in rabbits. Cryobiology 59(1):28–35CrossRefPubMedGoogle Scholar
  11. Jomha NM, Elliott JA, Law GK, Maghdoori B, Forbes JF, Abazari A, Adesida AB, Laouar L, Zhou X, McGann LE (2012) Vitrification of intact human articular cartilage. Biomaterials 33(26):6061–6068CrossRefPubMedGoogle Scholar
  12. Judas F, Rosa S, Teixeira L, Lopes C, Ferreira Mendes A (2007) Chondrocyte viability in fresh and frozen large human osteochondral allografts: effect of cryoprotective agents. Transplant Proc 39(8):2531–2534CrossRefPubMedGoogle Scholar
  13. Nakayama J, Fujioka H, Nagura I, Kokubu T, Makino T, Kuroda R, Tabata Y, Kurosaka M (2009) The effect of fibroblast growth factor-2 on autologous osteochondral transplantation. Int Orthop 33(1):275–280CrossRefPubMedGoogle Scholar
  14. Onari I, Hayashi M, Ozaki N, Tsuchiya H (2012) Vitreous preservation of articular cartilage from cryoinjury in rabbits. Cryobiology 65(2):98–103CrossRefPubMedGoogle Scholar
  15. Pallante AL, Chen AC, Ball ST, Amiel D, Masuda K, Sah RL, Bugbee WD (2012a) The in vivo performance of osteochondral allografts in the goat is diminished with extended storage and decreased cartilage cellularity. Am J Sports Med 40(8):1814–1823CrossRefPubMedPubMedCentralGoogle Scholar
  16. Pallante AL, Gortz S, Chen AC, Healey RM, Chase DC, Ball ST, Amiel D, Sah RL, Bugbee WD (2012b) Treatment of articular cartilage defects in the goat with frozen versus fresh osteochondral allografts: effects on cartilage stiffness, zonal composition, and structure at six months. J Bone Jt Surg Am 94(21):1984–1995CrossRefGoogle Scholar
  17. Pallante-Kichura AL, Chen AC, Temple-Wong MM, Bugbee WD, Sah RL (2013) In vivo efficacy of fresh versus frozen osteochondral allografts in the goat at 6 months is associated with PRG4 secretion. J Orthop Res 31(6):880–886CrossRefPubMedPubMedCentralGoogle Scholar
  18. Saltzman BM, Riboh JC, Cole BJ, Yanke AB (2015) Humeral head reconstruction with osteochondral allograft transplantation. Arthroscopy 31(9):1827–1834CrossRefPubMedGoogle Scholar
  19. Sherman SL, Garrity J, Bauer K, Cook J, Stannard J, Bugbee W (2014) Fresh osteochondral allograft transplantation for the knee: current concepts. J Am Acad Orthop Surg 22(2):121–133PubMedGoogle Scholar
  20. Shibuya N, Imai Y, Lee YS, Kochi T, Tachi M (2014) Acute rejection of knee joint articular cartilage in a rat composite tissue allotransplantation model. J Bone Jt Surg Am 96(12):1033–1039CrossRefGoogle Scholar
  21. Sommaggio R, Perez-Cruz M, Brokaw JL, Manez R, Costa C (2013) Inhibition of complement component C5 protects porcine chondrocytes from xenogeneic rejection. Osteoarthr Cartil 21(12):1958–1967CrossRefPubMedGoogle Scholar
  22. Torrie AM, Kesler WW, Elkin J, Gallo RA (2015) Osteochondral allograft. Curr Rev Musculoskelet Med 8(4):413–422CrossRefPubMedPubMedCentralGoogle Scholar
  23. Zhao W, Zhang Z, Zhao Q, Liu M, Wang Y (2015) Inhibition of interferon regulatory factor 4 attenuates acute liver allograft rejection in mice. Scand J Immunol 82(3):262–268CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Sports MedicineTaishan Medical UniversityTai’anChina
  2. 2.Institute of Sports MedicineTaishan Medical UniversityTai’anChina

Personalised recommendations