Advertisement

Cybernetics and Systems Analysis

, Volume 55, Issue 5, pp 760–771 | Cite as

Expansions of Weighted Pseudoinverses with Mixed Weights into Matrix Power Series and Power Products

  • E. F. GalbaEmail author
  • N. A. Vareniuk
SYSTEMS ANALYSIS
  • 4 Downloads

Abstract

Expansions of weighted pseudoinverses with mixed weights into matrix power series or power products with negative exponents are defined and analyzed. One of these matrices is positive definite and the other is nonsingular and indefinite. Polynomial limit representations of these matrices are obtained. Regularized iterative methods are constructed to evaluate weighted pseudoinverses with mixed weights.

Keywords

weighted pseudoinverses with mixed weights matrix power series and power products limit representations of weighted pseudoinverses regularized iterative methods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. S. Chipman, “On least squares with insufficient observation,” J. Amer. Statist. Assoc., Vol. 59, No. 308, 1078–1111 (1964).MathSciNetCrossRefGoogle Scholar
  2. 2.
    R. D. Milne, “An oblique matrix pseudoinverse,” SIAM J. Appl. Math., Vol. 16, No. 5, 931–944 (1968).MathSciNetCrossRefGoogle Scholar
  3. 3.
    J. F. Ward, T. L. Boullion, and T. O. Lewis, “A note on the oblique matrix pseudoinverse,” SIAM J. Appl. Math., Vol. 20, No. 2, 173–175 (1971).MathSciNetCrossRefGoogle Scholar
  4. 4.
    J. F. Ward, T. L. Boullion, and T. O. Lewis, “Weighted pseudoinverses with singular weights,” SIAM J. Appl. Math., Vol. 21, No. 3, 480–482 (1971).MathSciNetCrossRefGoogle Scholar
  5. 5.
    E. F. Galba, V. S. Deineka, and I. V. Sergienko, “Weighted pseudoinverses and weighted normal pseudosolutions with singular weights,” Comp. Math. Math. Physics, Vol. 49, No. 8, 1281–1297 (2009).MathSciNetCrossRefGoogle Scholar
  6. 6.
    I. V. Sergienko, E. F. Galba, and V. S. Deineka, “Existence and uniqueness of weighted pseudoinverse matrices and weighted normal pseudosolutions with singular weights,” Ukr. Math. J., Vol. 63, No. 1, 63–98 (2011).MathSciNetCrossRefGoogle Scholar
  7. 7.
    I. V. Sergienko, E. F. Galba, and V. S. Deineka, “Existence and uniqueness theorems in the theory of weighted pseudoinverses with singular weights,” Cybern. Syst. Analysis, Vol. 47, No. 1, 11–28 (2011).MathSciNetCrossRefGoogle Scholar
  8. 8.
    S. K. Mitra and C. R Rao, “Projections under seminorms and generalized Moore–Penroze inverses,” Linear Algebra and Appl., No. 9, 155–167 (1974).MathSciNetCrossRefGoogle Scholar
  9. 9.
    C. R. Rao and S. K. Mitra, Generalized Inverse of Matrices and its Applications, Wiley, New York (1971).Google Scholar
  10. 10.
    N. A. Varenyuk, E. F. Galba, I. V. Sergienko, and A. N. Khimich, “Weighted pseudoinversion with indefinite weights,” Ukr. Math. J., Vol. 70, No. 6, 866–889 (2018).MathSciNetCrossRefGoogle Scholar
  11. 11.
    E. F. Galba and N. A. Vareniuk, “Representing weighted pseudoinverse matrices with mixed weights in terms of other pseudoinverses,” Cybern. Syst. Analysis, Vol. 54, No. 2, 185–192 (2018).MathSciNetCrossRefGoogle Scholar
  12. 12.
    L. S. Pontryagin, “Hermite operators in space with indefinite metrics,” Izv. AN SSSR, Ser. Matematika, No. 8, 243–280 (1944).Google Scholar
  13. 13.
    A. I. Mal’tsev, Fundamentals of Linear Algebra [in Russian], Gostekhizdat, Moscow (1948).Google Scholar
  14. 14.
    J. Bognar, Indefinite Inner Product Spaces, Springer Verlag, Berlin–Heidelberg–New York (1974).CrossRefGoogle Scholar
  15. 15.
    I. Gohberg, P. Lancaster, and L. Rodman, Matrices and Indefinite Scalar Products, Birkhauser, Basel–Boston–Stuttgart (1983).Google Scholar
  16. 16.
    T. Ya. Azizov and I. S. Iohvidov, Linear Operators in Spaces with an Indefinite Metric, John Wiley and Sons, Ltd., Chichester (1989).Google Scholar
  17. 17.
    P. Lancaster and P. Rozsa, “Eigenvectors of H-self-adjoint matrices,” Z. Angew. Math. und Mech., Vol. 64, No. 9, 439–441 (1984).Google Scholar
  18. 18.
    Kh. D. Ikramov, “On algebraic properties of classes of pseudopermutation and H-self-adjoint matrices,” Zhurn. Vych. Mat. Mat. Fiz., Vol. 32, No. 8, 155–169 (1992).Google Scholar
  19. 19.
    R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge Univ. Press (2012).Google Scholar
  20. 20.
    E. F. Galba, “Weighted singular decomposition and weighted pseudoinversion of matrices,” Ukr. Math. J., Vol. 48, No. 10, 1618–1622 (1996).MathSciNetCrossRefGoogle Scholar
  21. 21.
    E. F. Galba, V. S. Deineka, and I. V. Sergienko, “Expansions and polynomial limit representations of weighted pseudoinverses,” Comp. Math. Math. Physics, Vol. 47, No. 5, 713–731 (2007).MathSciNetCrossRefGoogle Scholar
  22. 22.
    E. F. Galba, V. S. Deineka, and I. V. Sergienko, “Necessary and sufficient conditions of the existence of one of the variants of weighted singular-value decomposition of matrices with singular weights,” Doklady RAN, Vol. 455, No. 3, 261–264 (2014).Google Scholar
  23. 23.
    I. V. Sergienko, E. F. Galba, and V. S. Deineka, “Necessary and sufficient conditions for the existence of weighted singular-value decompositions of matrices with singular weights,” Ukr. Math. J., Vol. 67, No. 3, 464–486 (2015).MathSciNetCrossRefGoogle Scholar
  24. 24.
    C. F. Van Loan, “Generalizing the singular value decomposition,” SIAM J. Numer. Anal., Vol. 13, No. 1, 76–83 (1976).MathSciNetCrossRefGoogle Scholar
  25. 25.
    Y. Wei and D. Wang, “Condition numbers and perturbation of the weighted Moore–Penrose inverse and weighted linear least squares problem,” Appl. Math. Comput., Vol. 145, 45–58 (2003).MathSciNetCrossRefGoogle Scholar
  26. 26.
    Y. Wei, “A note on the sensitivity of the solution of the weighted linear least squares problem,” Appl. Math. Comput., Vol. 145, 481–485 (2003).Google Scholar
  27. 27.
    A. N. Khimich and E. A. Nikolaevskaya, “Reliability analys of computer solutions of systems of linear algebraic equations with approximate initial data,” Cybern. Syst. Analysis, Vol. 44, No. 6, 863–874 (2008).MathSciNetCrossRefGoogle Scholar
  28. 28.
    E. A. Nikolaevskaya and A. N. Khimich, “Error estimation for a weighted minimum-norm least squares solution with positive definite weights,” Comp. Math. Math. Physics, Vol. 49, No. 3, 409–417 (2009).MathSciNetCrossRefGoogle Scholar
  29. 29.
    A. N. Khimich, “Perturbation bounds for the least squares problem,” Cybern. Syst. Analysis, Vol. 32, No. 3, 434–436 (1996).MathSciNetCrossRefGoogle Scholar
  30. 30.
    I. V. Sergienko, E. F. Galba, and V. S. Deineka, “Representations and expansions of weighted pseudoinverse matrices, iterative methods, and problem regularization. I. Positive definite weights,” Cybern. Syst. Analysis, Vol. 44, No. 1, 36–55 (2008).MathSciNetCrossRefGoogle Scholar
  31. 31.
    I. V. Sergienko, E. F. Galba, and V. S. Deineka, “Representations and expansions of weighted pseudoinverse matrices, iterative methods, and problem regularization. II. Singular weights,” Cybern. Syst. Analysis, Vol. 44, No. 3, 375–396 (2008).MathSciNetCrossRefGoogle Scholar
  32. 32.
    E. F. Galba and I. V. Sergienko, “Methods for computing weighted pseudoinverses and weighted normal pseudosolutions with singular weights,” Cybern. Syst. Analysis, Vol. 54, No. 3, 398–422 (2018).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.V. M. Glushkov Institute of CyberneticsNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations