Advertisement

Cybernetics and Systems Analysis

, Volume 53, Issue 3, pp 366–372 | Cite as

Bayesian Recognition of Inflammatory Processes in Brain Gliomas

  • N. Ja. GridinaEmail author
  • A. M. Gupal
  • A. L. Tarasov
Article
  • 25 Downloads

Abstract

Application of Bayesian recognition procedures to erythrocyte sedimentation rate in brain gliomas has allowed detecting inflammatory processes in a human body. The analysis of results of the recognition methods based on tree network methods, Markov chains, and nearest neighbor algorithm has shown that Bayesian procedure was the most efficient.

Keywords

Bayesian recognition procedures brain gliomas Markov chain nearest neighbor algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. E. Matsko and A. G. Korshunov, Atlas of Cerebrospinal Tumors [in Russian], Izd. RNKhI im. Prof. A. L. Polenova, St.-Peterburg (1998).Google Scholar
  2. 2.
    P. Kleihues and W. K. Cavenee, Pathology and Genetics Tumours of the Nervous System, Lyon (2000), pp. 9–71.Google Scholar
  3. 3.
    A. N. Luchnik, “A common link in the mechanism of self-maintenance of malignant growth: Green wound syndrome,” Ontogenez, Vol. 31, No. 3, 227–231 (2000).Google Scholar
  4. 4.
    P. M. Shvartsburd, “A chronic inflammation increases the hazard of development of epithelial newgrowth, inducing a precancer microsurrounding: An analysis of disregulation mechanisms,” Voprosy Onkologii, Vol. 52, No. 2, 137–144 (2006).Google Scholar
  5. 5.
    F. Balkwill, “Targeting cancer-related inflammation,” Cancer Microenvironment, Vol. 2, Suppl. 1, S40 (2009).Google Scholar
  6. 6.
    L. M. Coussens and Z. Werb, “Inflammation and cancer,” Nature, Vol. 420, 860–867 (2002).CrossRefGoogle Scholar
  7. 7.
    N. Ya. Gridina, A. M. Gupal, I. V. Sergienko, and A. L. Tarasov, “Analysis of speed indexes of erythrocyte sedimentation for cerebral gliomas,” J. Autom. Inform. Sci., Vol. 39, No. 12, 52–59 (2007).CrossRefGoogle Scholar
  8. 8.
    I. V. Sergienko, N. Ya. Gridina, A. M. Gupal, and A. L. Tarasov, “The use of Bayesian recognition procedure by erythrocyte sedimentation rate when brain gliomas,” J. Autom. Inform. Sci., Vol. 41, No. 1, 8–14 (2009).CrossRefGoogle Scholar
  9. 9.
    A. V. Palagin, N. Ya. Gridina, A. M. Gupal, and A. L. Tarasov, “Computer-based system of analysis of erythrocyte sedimentation rate factors at brain gliomas,” J. Autom. Inform. Sci., Vol. 41, No. 5, 70–79 (2009).CrossRefGoogle Scholar
  10. 10.
    A. M. Gupal and I. V. Sergienko, Optimal Recognition Procedures [in Russian], Naukova Dumka, Kyiv (2008).Google Scholar
  11. 11.
    N. Ya. Gridina, A. M. Gupal, and A. L. Tarasov, “Comparative analysis of recognition methods of inflammatory processes at the gliomas of brain,” J. Autom. Inform. Sci., Vol. 42, No. 5, 45–52 (2010).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.A. P. Romodanov Neurosurgery InstituteNational Academy of Medical Sciences of UkraineKyivUkraine
  2. 2.V. M. Glushkov Institute of CyberneticsNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations