Advertisement

Cardiovascular Effects of Urocortin-2: Pathophysiological Mechanisms and Therapeutic Potential

  • Cláudia Monteiro-Pinto
  • Rui Adão
  • Adelino F. Leite-Moreira
  • Carmen Brás-SilvaEmail author
ORIGINAL ARTICLE
  • 16 Downloads

Abstract

Urocortin-2 (Ucn-2) is a peptide of the corticotrophin releasing factor-related family with several effects within the cardiovascular system. A variety of molecular mechanisms has been proposed to underlie some of these effects, although others remain mostly hypothetical. Growing interest in the cardiovascular properties of this peptide promoted several pre-clinical studies in the settings of heart failure and ischemia, as well as some experiments in the fields of systemic and pulmonary arterial hypertension. Most of these studies report promising results, with Ucn-2 showing therapeutic potential in these settings, and few clinical trials to date are trying to translate this potential to human cardiovascular disease. Ucn-2 also appears to have potential as a biomarker of diagnostic/prognostic relevance in cardiovascular disease, this being a recent field in the study of this peptide needing further corroboration. Regarding the increasing amount of evidence in Ucn-2 investigation, this work aims to make an updated review on its cardiovascular effects and molecular mechanisms of action and therapeutic potential, and to identify some research barriers and gaps in the study of this cardioprotective peptide.

Keywords

Urocortin-2 Cardiac function Heart failure Cardioprotection 

Notes

Funding Information

This work was supported by Portuguese Foundation for Science and Technology (FCT) through Grant UID/IC/00051/2013 and project IMPAcT- PTDC/MED-FSL/31719/2017.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Chang CL, Hsu SYT. Ancient evolution of stress-regulating peptides in vertebrates. Peptides. 2004;25(10):1681–8.Google Scholar
  2. 2.
    Saffran M, Schally AV, Benfey BG. Stimulation of the release of corticotropin from the adenohypophysis by a neurohypophysial factor. Endocrinology. 1955;57(4):439–44.Google Scholar
  3. 3.
    Saffran M, Schally AV. The release of corticotrophin by anterior pituitary tissue in vitro. Can J Biochem Phys. 1955;33(3):408–15.Google Scholar
  4. 4.
    Vaughan J, Donaldson C, Bittencourt J, Perrin MH, Lewis K, Sutton S, et al. Urocortin, a mammalian neuropeptide related to fish urotensin I and to corticotropin-releasing factor. Nature. 1995;378(6554):287–92.Google Scholar
  5. 5.
    Deussing JM, Chen A. The corticotropin-releasing factor family: physiology of the stress response. Physiol Rev. 2018;98(4):2225–86.Google Scholar
  6. 6.
    Rademaker MT, Richards AM. Urocortins: actions in health and heart failure. Clin Chim Acta. 2017;474:76–87.Google Scholar
  7. 7.
    Adao R, Santos-Ribeiro D, Rademaker MT, Leite-Moreira AF, Bras-Silva C. Urocortin 2 in cardiovascular health and disease. Drug Discov Today. 2015;20(7):906–14.Google Scholar
  8. 8.
    Onorati F, Chen-Scarabelli C, Knight R, Stephanou A, Mohanti B, Santini F, et al. Targeting urocortin signaling pathways to enhance cardioprotection: is it time to move from bench to bedside? Cardiovasc Drugs Ther. 2013;27(5):451–63.Google Scholar
  9. 9.
    Hsu SY, Hsueh AJW. Human stresscopin and stresscopin-related peptide are selective ligands for the type 2 corticotropin-releasing hormone receptor. Nat Med. 2001;7(5):605–11.Google Scholar
  10. 10.
    Chen A, Blount A, Vaughan J, Brar B, Vale W. Urocortin II gene is highly expressed in mouse skin and skeletal muscle tissues: localization, basal expression in corticotropin-releasing factor receptor (CRFR) 1-and CRFR2-null mice, and regulation by glucocorticoids. Endocrinology. 2004;145(5):2445–57.Google Scholar
  11. 11.
    Yamauchi N, Otagiri A, Nemoto T, Sekino A, Oono H, Kato I, et al. Distribution of urocortin 2 in various tissues of the rat. J Neuroendocrinol. 2005;17(10):656–63.Google Scholar
  12. 12.
    Karteris E, Hillhouse EW, Grammatopoulos D. Urocortin II is expressed in human pregnant myometrial cells and regulates myosin light chain phosphorylation: potential role of the type-2 corticotropin-releasing hormone receptor in the control of myometrial contractility. Endocrinology. 2004;145(2):890–900.Google Scholar
  13. 13.
    Martinez V, Wang L, Million M, Rivier J, Taché Y. Urocortins and the regulation of gastrointestinal motor function and visceral pain. Peptides. 2004;25(10):1733–44.Google Scholar
  14. 14.
    Florio P, Torres PB, Torricelli M, Toti P, Vale W, Petraglia F. Human endometrium expresses urocortin II and III messenger RNA and peptides. Fertil Steril. 2006;86(6):1766–70.Google Scholar
  15. 15.
    Pepels PPLM, Spaanderman MEA, Bulten J, Smits PBAM, Hermus ARMM, Lotgering FK, et al. Placental urocortins and CRF in late gestation. Placenta. 2009;30(6):483–90.Google Scholar
  16. 16.
    Reyes TM, Lewis K, Perrin MH, Kunitake KS, Vaughan J, Arias CA, et al. Urocortin II: a member of the corticotropin-releasing factor (CRF) neuropeptide family that is selectively bound by type 2 CRF receptors. Proc Natl Acad Sci U S A. 2001;98(5):2843–8.Google Scholar
  17. 17.
    Vaughan JM, Donaldson CJ, Fischer WH, Perrin MH, Rivier JE, Sawchenko PE, et al. Posttranslational processing of human and mouse urocortin 2: characterization and bioactivity of gene products. Endocrinology. 2013;154(4):1553–64.Google Scholar
  18. 18.
    Liew OW, Yandle TG, Chong JPC, Ng YX, Frampton CM, Ng TP, et al. High-sensitivity sandwich ELISA for plasma NT-proUcn2: plasma concentrations and relationship to mortality in heart failure. Clin Chem. 2016;62(6):856–65.Google Scholar
  19. 19.
    Mazur AW, Wang F, Tscheiner M, Donnelly E, Isfort RJ. Determinants of corticotropin releasing factor. Receptor selectivity of corticotropin releasing factor related peptides. J Med Chem. 2004;47(13):3450–4.Google Scholar
  20. 20.
    Isfort RJ, Wang F, Tscheiner M, Dolan E, Bauer MB, Lefever F, et al. Modifications of the human urocortin 2 peptide that improve pharmacological properties. Peptides. 2006;27(7):1806–13.Google Scholar
  21. 21.
    Meyer AH, Ullmer C, Schmuck K, Morel C, Wishart W, Lübbert H, et al. Localization of the human CRF2 receptor to 7p21–p15 by radiation hybrid mapping and FISH analysis. Genomics. 1997;40(1):189–90.Google Scholar
  22. 22.
    Lesh JS, Burrows HL, Seasholtz AF, Camper SA. Mapping of the mouse corticotropin-releasing hormone receptor 2 gene (Crhr2) to chromosome 6. Mamm Genome. 1997;8(12):944–5.Google Scholar
  23. 23.
    Valdenaire O, Giller T, Breu V, Gottowik J, Kilpatrick G. A new functional isoform of the human CRF2 receptor for corticotropin-releasing factor1. BBA-Gene Struct Expr. 1997;1352(2):129–32.Google Scholar
  24. 24.
    Kimura Y, Takahashi K, Totsune K, Muramatsu Y, Kaneko C, Darnel AD, et al. Expression of urocortin and corticotropin-releasing factor receptor subtypes in the human heart. J Clin Endocrinol Metab. 2002;87(1):340–6.Google Scholar
  25. 25.
    Pal K, Swaminathan K, Xu HE, Pioszak AA. Structural basis for hormone recognition by the human CRFR2α G protein-coupled receptor. J Biol Chem. 2010;285(51):40351–61.Google Scholar
  26. 26.
    Grammatopoulos DK. Insights into mechanisms of corticotropin-releasing hormone receptor signal transduction. Brit J Pharmacol. 2012;166(1):85–97.Google Scholar
  27. 27.
    Wiley KE, Davenport AP. CRF2 receptors are highly expressed in the human cardiovascular system and their cognate ligands urocortins 2 and 3 are potent vasodilators. Brit J Pharmacol. 2004;143(4):508–14.Google Scholar
  28. 28.
    Hillhouse EW, Grammatopoulos DK. The molecular mechanisms underlying the regulation of the biological activity of corticotropin-releasing hormone receptors: implications for physiology and pathophysiology. Endocr Rev. 2006;27(3):260–86.Google Scholar
  29. 29.
    Bale TL, Hoshijima M, Gu Y, Dalton N, Anderson KR, Lee KF, et al. The cardiovascular physiologic actions of urocortin II: acute effects in murine heart failure. Proc Natl Acad Sci U S A. 2004;101(10):3697–702.Google Scholar
  30. 30.
    Chen S, Wang Z, Xu B, Mi X, Sun W, Quan N, et al. The modulation of cardiac contractile function by the pharmacological and toxicological effects of urocortin2. Toxicol Sci. 2015;148(2):581–93.Google Scholar
  31. 31.
    Yang LZ, Kockskämper J, Khan S, Suarez J, Walther S, Doleschal B, et al. cAMP-and Ca2+/calmodulin-dependent protein kinases mediate inotropic, lusitropic and arrhythmogenic effects of urocortin 2 in mouse ventricular myocytes. Brit J Pharmacol. 2011;162(2):544–56.Google Scholar
  32. 32.
    Yang LZ, Kockskämper J, Heinzel FR, et al. Urocortin II enhances contractility in rabbit ventricular myocytes via CRF2 receptor-mediated stimulation of protein kinase A. Cardiovasc Res. 2006;69(2):402–11.Google Scholar
  33. 33.
    Makarewich CA, Troupes CD, Schumacher SM, Gross P, Koch WJ, Crandall DL, et al. Comparative effects of urocortins and stresscopin on cardiac myocyte contractility. J Mol Cell Cardiol. 2015;86:179–86.Google Scholar
  34. 34.
    Grossini E, Molinari C, Mary DASG, Marino P, Vacca G. The effect of urocortin II administration on the coronary circulation and cardiac function in the anaesthetized pig is nitric-oxide-dependent. Eur J Pharmacol. 2008;578(2–3):242–8.Google Scholar
  35. 35.
    Rademaker MT, Cameron VA, Charles CJ, Richards AM. Integrated hemodynamic, hormonal, and renal actions of urocortin 2 in normal and paced sheep: beneficial effects in heart failure. Circulation. 2005;112(23):3624–32.Google Scholar
  36. 36.
    Gao MH, Lai NC, Miyanohara A, Schilling JM, Suarez J, Tang T, et al. Intravenous adeno-associated virus serotype 8 encoding urocortin-2 provides sustained augmentation of left ventricular function in mice. Hum Gene Ther. 2013;24(9):777–85.Google Scholar
  37. 37.
    Giamouridis D, Gao MH, Lai NC, Tan Z, Kim YC, Guo T, et al. Effects of urocortin 2 versus urocortin 3 gene transfer on left ventricular function and glucose disposal. JACC Basic Transl Sci. 2018;3(2):249–64.Google Scholar
  38. 38.
    Tsuda T, Takefuji M, Wettschureck N, Kotani K, Morimoto R, Okumura T, et al. Corticotropin releasing hormone receptor 2 exacerbates chronic cardiac dysfunction. J Exp Med. 2017;214(7):1877–88.Google Scholar
  39. 39.
    Davis ME, Pemberton CJ, Yandle TG, Fisher SF, Lainchbury JG, Frampton CM, et al. Urocortin 2 infusion in healthy humans: hemodynamic, neurohormonal, and renal responses. J Am Coll Cardiol. 2007;49(4):461–71.Google Scholar
  40. 40.
    Chan WYW, Charles CJ, Frampton CM, Richards AM, Crozier IG, Troughton RW, et al. Human muscle sympathetic nerve responses to urocortin-2 in health and stable heart failure. Clin Exp Pharmacol Physiol. 2015;42(9):888–95.Google Scholar
  41. 41.
    Walther S, Pluteanu F, Renz S, Nikonova Y, Maxwell JT, Yang LZ, et al. Urocortin 2 stimulates nitric oxide production in ventricular myocytes via Akt-and PKA-mediated phosphorylation of eNOS at serine 1177. Am J Physiol-Heart C. 2014;307(5):H689–700.Google Scholar
  42. 42.
    Mackay KB, Stiefel TH, Ling N, Foster AC. Effects of a selective agonist and antagonist of CRF2 receptors on cardiovascular function in the rat. Eur J Pharmacol. 2003;469(1–3):111–5.Google Scholar
  43. 43.
    Gardiner SM, March JE, Kemp PA, Davenport AP, Wiley KE, Bennett T. Regional hemodynamic actions of selective corticotropin-releasing factor type 2 receptor ligands in conscious rats. J Pharmacol Exp Ther. 2005;312(1):53–60.Google Scholar
  44. 44.
    Gardiner SM, March JE, Kemp PA, Bennett T. A comparison between the cardiovascular actions of urocortin 1 and urocortin 2 (stresscopin-related peptide) in conscious rats. J Pharmacol Exp Ther. 2007;321(1):221–6.Google Scholar
  45. 45.
    Charles CJ, Jardine DL, Rademaker MT, Richards AM. Urocortin 2 induces potent long-lasting inhibition of cardiac sympathetic drive despite baroreflex activation in conscious sheep. J Endocrinol. 2010;204(2):181–9.Google Scholar
  46. 46.
    Chanalaris A, Lawrence KM, Townsend PA, Davidson S, Jashmidi Y, Stephanou A, et al. Hypertrophic effects of urocortin homologous peptides are mediated via activation of the Akt pathway. Biochem Biophys Res Commun. 2005;328(2):442–8.Google Scholar
  47. 47.
    Ikeda K, Tojo K, Otsubo C, Udagawa T, Hosoya T, Tajima N, et al. Effects of urocortin II on neonatal rat cardiac myocytes and non-myocytes. Peptides. 2005;26(12):2473–81.Google Scholar
  48. 48.
    Walther S, Awad S, Lonchyna VA, Blatter LA. NFAT transcription factor regulation by urocortin II in cardiac myocytes and heart failure. Am J Physiol-Heart C. 2014;306(6):H856–H66.Google Scholar
  49. 49.
    Yang LZ, Zhu YC. Urocortin2 prolongs action potential duration and modulates potassium currents in Guinea pig myocytes and HEK293 cells. Eur J Pharmacol. 2015;758:97–106.Google Scholar
  50. 50.
    Kageyama K, Furukawa KI, Miki I, Terui K, Motomura S, Suda T. Vasodilative effects of urocortin II via protein kinase A and a mitogen-activated protein kinase in rat thoracic aorta. J Cardiovasc Pharmacol. 2003;42(4):561–5.Google Scholar
  51. 51.
    Chen CY, Doong ML, Rivier JE, Taché Y. Intravenous urocortin II decreases blood pressure through CRF2 receptor in rats. Regul Peptides. 2003;113(1–3):125–30.Google Scholar
  52. 52.
    Akiba Y, Kaunitz JD, Million M. Peripheral corticotropin-releasing factor receptor type 2 activation increases colonic blood flow through nitric oxide pathway in rats. Digest Dis Sci. 2015;60(4):858–67.Google Scholar
  53. 53.
    Smani T, Calderon E, Rodriguez-Moyano M, Dominguez-Rodriguez A, Diaz I, Ordóñez A. Urocortin-2 induces vasorelaxation of coronary arteries isolated from patients with heart failure. Clin Exp Pharmacol Physiol. 2011;38(1):71–6.Google Scholar
  54. 54.
    Venkatasubramanian S, Griffiths ME, McLean SG, Miller MR, Luo R, Lang NN, et al. Vascular effects of urocortins 2 and 3 in healthy volunteers. J Am Heart Assoc. 2013;2(1):e004267.Google Scholar
  55. 55.
    Stirrat CG, Venkatasubramanian S, Pawade T, Mitchell AJ, Shah AS, Lang NN, et al. Cardiovascular effects of urocortin 2 and urocortin 3 in patients with chronic heart failure. Br J Clin Pharmacol. 2016;82(4):974–82.Google Scholar
  56. 56.
    Grossini E, Molinari C, Mary DASG, Uberti F, Ribichini F, Caimmi PP, et al. Urocortin II induces nitric oxide production through cAMP and Ca2+ related pathways in endothelial cells. Cell Physiol Biochem. 2009;23(1–3):087–96.Google Scholar
  57. 57.
    Grossini E, Caimmi PP, Molinari C, Mary DASG, Uberti F, Vacca G. Modulation of calcium movements by urocortin II in endothelial cells. Cell Physiol Biochem. 2010;25(2–3):221–32.Google Scholar
  58. 58.
    Rademaker MT, Charles CJ, Ellmers LJ, Lewis LK, Nicholls MG, Richards AM. Prolonged urocortin 2 administration in experimental heart failure: sustained hemodynamic, endocrine, and renal effects. Hypertension. 2011;57(6):1136–44.Google Scholar
  59. 59.
    Rademaker MT, Charles CJ, Nicholls G, Richards M. Urocortin 2 sustains haemodynamic and renal function during introduction of beta-blockade in experimental heart failure. J Hypertens. 2011;29(9):1787–95.Google Scholar
  60. 60.
    Rademaker MT, Ellmers LJ, Charles CJ, Richards AM. Urocortin 2 protects heart and kidney structure and function in an ovine model of acute decompensated heart failure: comparison with dobutamine. Int J Cardiol. 2015;197:56–65.Google Scholar
  61. 61.
    Lai NC, Gao MH, Giamouridis D, Suarez J, Miyanohara A, Parikh J, et al. Intravenous AAV8 encoding urocortin-2 increases function of the failing heart in mice. Hum Gene Ther. 2015;26(6):347–56.Google Scholar
  62. 62.
    Giamouridis D, Gao MH, Lai NC, Tan Z, Kim YC, Guo T, et al. Urocortin 3 gene transfer increases function of the failing murine heart. Hum Gene Ther. 2019;30(1):10–20.Google Scholar
  63. 63.
    Kim YC, Giamouridis D, Lai NC, Guo T, Xia B, Fu Z, et al. Urocortin 2 gene transfer reduces the adverse effects of western diet on cardiac function in mice. Hum Gene Ther. 2019;30:693–701.Google Scholar
  64. 64.
    Rademaker MT, Charles CJ, Nicholls MG, Richards AM. Urocortin 2 combined with angiotensin-converting enzyme inhibition in experimental heart failure. Clin Sci. 2008;114(10):635–42.Google Scholar
  65. 65.
    Rademaker MT, Charles CJ, Nicholls MG, Richards AM. Urocortin 2 inhibits furosemide-induced activation of renin and enhances renal function and diuretic responsiveness in experimental heart failure. Circ Heart Fail. 2009;2(6):532–40.Google Scholar
  66. 66.
    Rademaker MT, Charles CJ, Nicholls MG, Richards AM. Interactions of enhanced urocortin 2 and mineralocorticoid receptor antagonism in experimental heart failure. Circ Heart Fail. 2013;6(4):825–32.Google Scholar
  67. 67.
    Davis ME, Pemberton CJ, Yandle TG, Fisher SF, Lainchbury JG, Frampton CM, et al. Urocortin 2 infusion in human heart failure. Eur Heart J. 2007;28(21):2589–97.Google Scholar
  68. 68.
    Chan WYW, Frampton CM, Crozier IG, Troughton RW, Richards AM. Urocortin-2 infusion in acute decompensated heart failure: findings from the UNICORN study (urocortin-2 in the treatment of acute heart failure as an adjunct over conventional therapy). JACC: Heart Fail. 2013;1(5):433–41.Google Scholar
  69. 69.
    Chanalaris A, Lawrence KM, Stephanou A, Knight RD, Hsu SY, Hsueh AJ, et al. Protective effects of the urocortin homologues stresscopin (SCP) and stresscopin-related peptide (SRP) against hypoxia/reoxygenation injury in rat neonatal cardiomyocytes. J Mol Cell Cardiol. 2003;35(10):1295–305.Google Scholar
  70. 70.
    Brar BK, Jonassen AK, Egorina EM, Chen A, Negro A, Perrin MH, et al. Urocortin-II and urocortin-III are cardioprotective against ischemia reperfusion injury: an essential endogenous cardioprotective role for corticotropin releasing factor receptor type 2 in the murine heart. Endocrinology. 2004;145(1):24–35.Google Scholar
  71. 71.
    Gao XF, Zhou Y, Wang DY, Lew KS, Richards AM, Wang P. Urocortin-2 suppression of p38-MAPK signaling as an additional mechanism for ischemic cardioprotection. Mol Cell Biochem. 2015;398(1–2):135–46.Google Scholar
  72. 72.
    Li J, Qi D, Cheng H, Hu X, Miller EJ, Wu X, et al. Urocortin 2 autocrine/paracrine and pharmacologic effects to activate AMP-activated protein kinase in the heart. Proc Natl Acad Sci U S A. 2013;110(40):16133–8.Google Scholar
  73. 73.
    Liu CN, Yang C, Liu XY, Li S. In vivo protective effects of urocortin on ischemia-reperfusion injury in rat heart via free radical mechanisms. Can J Physiol Pharmacol. 2005;83(6):459–65.Google Scholar
  74. 74.
    Domínguez-Rodríguez A, Mayoral-González I, Avila-Medina J, et al. Urocortin-2 prevents dysregulation of Ca2+ homeostasis and improves early cardiac remodeling after ischemia and reperfusion. Front Physiol. 2018;9:813.Google Scholar
  75. 75.
    Ellmers LJ, Scott NJ, Cameron VA, Richards AM, Rademaker MT. Chronic urocortin 2 administration improves cardiac function and ameliorates cardiac remodeling after experimental myocardial infarction. J Cardiovasc Pharmacol. 2015;65(3):269–75.Google Scholar
  76. 76.
    Dieterle T, Meili-Butz S, Bühler K, et al. Immediate and sustained blood pressure lowering by urocortin 2: a novel approach to antihypertensive therapy? Hypertension. 2009;53(4):739–44.Google Scholar
  77. 77.
    Liu C, Liu X, Yang J, Duan Y, Yao H, Li F, et al. The effects of vasoactive peptide urocortin 2 on hemodynamics in spontaneous hypertensive rat and the role of L-type calcium channel and CRFR2. Pharmacol Rep. 2015;67(2):394–8.Google Scholar
  78. 78.
    Meili-Butz S, Bühler K, John D, Buser P, Vale WW, Peterson KL, et al. Acute effects of urocortin 2 on cardiac function and propensity for arrhythmias in an animal model of hypertension-induced left ventricular hypertrophy and heart failure. Eur J Heart Fail. 2010;12(8):797–804.Google Scholar
  79. 79.
    Adão R, Mendes-Ferreira P, Santos-Ribeiro D, Maia-Rocha C, Pimentel LD, Monteiro-Pinto C, et al. Urocortin-2 improves right ventricular function and attenuates pulmonary arterial hypertension. Cardiovasc Res. 2018;114(8):1165–77.Google Scholar
  80. 80.
    Topal E, Yağmur J, Otlu B, Ataş H, Cansel M, Açıkgöz N, et al. Relationship of urocortin-2 with systolic and diastolic functions and coronary artery disease: an observational study. Anatol J Cardiol. 2012;12(2):115–20.Google Scholar
  81. 81.
    Emeto TI, Moxon JV, Biros E, Rush CM, Clancy P, Woodward L, et al. Urocortin 2 is associated with abdominal aortic aneurysm and mediates anti-proliferative effects on vascular smooth muscle cells via corticotrophin releasing factor receptor 2. Clin Sci. 2014;126(7):517–27.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Cláudia Monteiro-Pinto
    • 1
  • Rui Adão
    • 1
  • Adelino F. Leite-Moreira
    • 1
  • Carmen Brás-Silva
    • 1
    • 2
    Email author
  1. 1.Department of Surgery and Physiology, Cardiovascular Research and Development Center—UnIC, Faculty of MedicineUniversity of PortoPortoPortugal
  2. 2.Faculty of Nutrition and Food SciencesUniversity of PortoPortoPortugal

Personalised recommendations