Two Birds with One Stone: Regular Use of PDE5 Inhibitors for Treating Male Patients with Erectile Dysfunction and Cardiovascular Diseases

  • Zhonglin Cai
  • Jianzhong Zhang
  • Hongjun LiEmail author


Patients with cardiovascular disease (CVD) frequently have erectile dysfunction (ED) because the two conditions have similar risk factors and potential mechanisms. The therapeutic effect of CVD is strongly dependent upon long-term management of the condition. Patients with CVD tend to have poor medication compliance, and the coexistence of ED often discourages patients with CVD from continuing their long-term CVD management, thus worsening CVD treatment compliance. The two major reasons for poor compliance are that (i) the adverse effects of cardiovascular medications on erectile function drive people to reduce the prescribed dosage or even stop taking the medications to obtain satisfactory sexual arousal and (ii) a worsening mental state due to ED reduces medication compliance. The regular administration of phosphodiesterase-5 inhibitors (PDE5is) guarantees that the prescribed medication dosages are easy to comply with and that they improve the mental status of patients by enhancing their erectile function, resulting in improved long-term management of CVD through medication compliance. PDE5is themselves also play a role in reducing cardiovascular events and improving the prognosis. We recommend prescribing PDE5is for ED and suggest that PDE5i administration is a promising strategy to improve the long-term management of patients with both ED and CVD.


Cardiovascular disease Erectile dysfunction Long-term management Medication compliance Phosphodiesterase-5 inhibitor 



Cyclic adenosine monophosphate


Cyclic guanosine monophosphate


Cardiovascular disease


Erectile dysfunction


G protein–coupled receptor


Heart failure


International Index of Erectile Function


Inositol 1,4,5-triphosphate


Myocardial infarction


Mitogen-activated protein kinase phosphatase-1


Pulmonary arterial hypertension


PDE5 inhibitors




Protein kinase G


Peroxisome proliferator-activated receptor gamma


Pulmonary vascular smooth muscle


Ras-related protein 1


Sexual encounter profile


Store-operated Ca2+ channel


Transient receptor potential canonical



We thank Angela Morben, DVM, ELS, from Liwen Bianji, Edanz Editing China (, for editing the English text of a draft of this manuscript.


Authors’ Contributions

All authors wrote, revised, and approved the manuscript. All authors read and approved the final manuscript.


This work is supported by the grant from National Natural Science Foundation of China (Grant No. 81671448) and Beijing Natural Science Foundation (Grant No. 7162152).

Compliance with Ethical Standards

Competing Interests

The authors declare that they have no competing interests.

Consent for publication

Not applicable.

Ethics Approval and Consent to Participate

Not applicable.


  1. 1.
    McMahon CG. Erectile dysfunction. Intern Med J. 2014;44(1):18–26.CrossRefPubMedGoogle Scholar
  2. 2.
    Rew KT, Heidelbaugh JJ. Erectile dysfunction. Am Fam Physician. 2016;94(10):820–7.PubMedGoogle Scholar
  3. 3.
    Imprialos KP, Stavropoulos K, Doumas M, et al. Sexual dysfunction, cardiovascular risk and effects of pharmacotherapy. Curr Vasc Pharmacol. 2018;16(2):130–42.CrossRefPubMedGoogle Scholar
  4. 4.
    Vlachopoulos CV, Terentes-Printzios DG, Ioakeimidis NK, et al. Prediction of cardiovascular events and all-cause mortality with erectile dysfunction: a systematic review and meta-analysis of cohort studies. Circ Cardiovasc Qual Outcomes. 2013;6(1):99–109.CrossRefPubMedGoogle Scholar
  5. 5.
    Uddin SMI, Mirbolouk M, Dardari Z, et al. Erectile dysfunction as an independent predictor of future cardiovascular events: the multi-ethnic study of atherosclerosis. Circulation. 2018, pii: CIRCULATIONAHA.118.033990.Google Scholar
  6. 6.
    Ho CH, Wu CC, Chen KC, et al. Erectile dysfunction, loss of libido and low sexual frequency increase the risk of cardiovascular disease in men with low testosterone. Aging Male. 2016;19(2):96–101.CrossRefPubMedGoogle Scholar
  7. 7.
    Turek SJ, Hastings SM, Sun JK, et al. Sexual dysfunction as a marker of cardiovascular disease in males with 50 or more years of type 1 diabetes. Diabetes Care. 2013;36(10):3222–6.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Hwang IC, Kim YJ, Park JB, et al. Pulmonary hemodynamics and effects of phosphodiesterase type 5 inhibition in heart failure: a meta-analysis of randomized trials. BMC Cardiovasc Disord. 2017;17(1):150.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Mátyás C, Németh BT, Oláh A, et al. Prevention of the development of heart failure with preserved ejection fraction by the phosphodiesterase-5A inhibitor vardenafil in rats with type 2 diabetes. Eur J Heart Fail. 2017;19(3):326–36.CrossRefPubMedGoogle Scholar
  10. 10.
    Imai Y, Kariya T, Iwakiri M, et al. Sildenafil ameliorates right ventricular early molecular derangement during left ventricular pressure overload. PLoS One. 2018;13(4):e0195528.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lee KH, Kwon SJ, Woo JS, et al. Effects of sildenafil on nanostructural and nanomechanical changes in mitochondria in an ischaemia-reperfusion rat model. Clin Exp Pharmacol Physiol. 2014;41(10):763–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Frankenreiter S, Bednarczyk P, Kniess A, et al. cGMP-elevating compounds and ischemic conditioning provide cardioprotection against ischemia and reperfusion injury via cardiomyocyte-specific BK channels. Circulation. 2017;136(24):2337–55.CrossRefPubMedGoogle Scholar
  13. 13.
    Banks E, Joshy G, Abhayaratna WP, et al. Erectile dysfunction severity as a risk marker for cardiovascular disease hospitalisation and all-cause mortality: a prospective cohort study. PLoS Med. 2013;10(1):e1001372.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hippisley-Cox J, Coupland C, Brindle P. Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: prospective cohort study. BMJ. 2017;357:j2099.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Miner M, Nehra A, Jackson G, et al. All men with vasculogenic erectile dysfunction require a cardiovascular workup. Am J Med. 2014;127(3):174–82.CrossRefPubMedGoogle Scholar
  16. 16.
    Schouten BW, Bohnen AM, Bosch JL, et al. Erectile dysfunction prospectively associated with cardiovascular disease in the Dutch general population: results from the Krimpen Study. Int J Impot Res. 2008;20(1):92–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Compostella L, Compostella C, Truong LV, et al. History of erectile dysfunction as a predictor of poor physical performance after an acute myocardial infarction. Eur J Prev Cardiol. 2017;24(5):460–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Hall SA, Shackelton R, Rosen RC, et al. Sexual activity, erectile dysfunction, and incident cardiovascular events. Am J Cardiol. 2010;105(2):192–7.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Andersson DP, Trolle Lagerros Y, Grotta A, et al. Association between treatment for erectile dysfunction and death or cardiovascular outcomes after myocardial infarction. Heart. 2017;103(16):1264–70.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Tobler D, Bouchardy J, Reto E, et al. Effect of phosphodiesterase-5 inhibition with tadalafil on systemic right ventricular size and function—a multi-center, double-blind, randomized, placebo-controlled clinical trial—serve trial—rational and design. Int J Cardiol. 2017;243:354–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Westermann D, Becher PM, Lindner D, et al. Selective PDE5A inhibition with sildenafil rescues left ventricular dysfunction, inflammatory immune response and cardiac remodeling in angiotensin II-induced heart failure in vivo. Basic Res Cardiol. 2012;107(6):308.CrossRefPubMedGoogle Scholar
  22. 22.
    Wang JS, Kovanecz I, Vernet D, et al. Effects of sildenafil and/or muscle derived stem cells on myocardial infarction. J Transl Med. 2012;10:159.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Lee TM, Chen CC, Chung TH, et al. Effect of sildenafil on ventricular arrhythmias in post-infarcted rat hearts. Eur J Pharmacol. 2012;690(1–3):124–32.CrossRefPubMedGoogle Scholar
  24. 24.
    Mennander AA, Vuohelainen V, Aanismaa RS, et al. Sildenafil after cardiac arrest and infarction; an experimental rat model. Scand Cardiovasc J Suppl. 2013;47(1):58–64.CrossRefPubMedGoogle Scholar
  25. 25.
    Anderson SG, Hutchings DC, Woodward M, et al. Phosphodiesterase type-5 inhibitor use in type 2 diabetes is associated with a reduction in all-cause mortality. Heart. 2016;102(21):1750–6.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Hackett G, Jones PW, Strange RC, et al. Statin, testosterone and phosphodiesterase 5-inhibitor treatments and age related mortality in diabetes. World J Diabetes. 2017;8(3):104–11.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Hackett G, Heald AH, Sinclair A, et al. Serum testosterone, testosterone replacement therapy and all-cause mortality in men with type 2 diabetes: retrospective consideration of the impact of PDE5 inhibitors and statins. Int J Clin Prxzact. 2016;70(3):244–53.CrossRefGoogle Scholar
  28. 28.
    Wallis RM, Corbin JD, Francis SH, et al. Tissue distribution of phosphodiesterase families and the effects of sildenafil on tissue cyclic nucleotides, platelet function, and the contractile responses of trabeculae carneae and aortic rings in vitro. Am J Cardiol. 1999;83(5A):3C–12C.CrossRefPubMedGoogle Scholar
  29. 29.
    Chau VQ, Salloum FN, Hoke NN, et al. Mitigation of the progression of heart failure with sildenafil involves inhibition of RhoA/Rho-kinase pathway. Am J Physiol Heart Circ Physiol. 2011;300(6):H2272–9.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    De Bon E, Bonanni G, Saggiorato G, et al. Effects of tadalafil on platelets and endothelium in patients with erectile dysfunction and cardiovascular risk factors: a pilot study. Angiology. 2010;61(6):602–6.CrossRefPubMedGoogle Scholar
  31. 31.
    Halcox JP, Nour KR, Zalos G, et al. The effect of sildenafil on human vascular function, platelet activation, and myocardial ischemia. J Am Coll Cardiol. 2002;40(7):1232–40.CrossRefPubMedGoogle Scholar
  32. 32.
    Hutchings DC, Anderson SG, Caldwell JL, et al. Phosphodiesterase-5 inhibitors and the heart: compound cardioprotection? Heart. 2018. pii: heartjnl-2017-312865.Google Scholar
  33. 33.
    Wilson LS, Elbatarny HS, Crawley SW, et al. Compartmentation and compartment-specific regulation of PDE5 by protein kinase G allows selective cGMP-mediated regulation of platelet functions. Proc Natl Acad Sci U S A. 2008;105(36):13650–5.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Makhoul S, Walter E, Pagel O, et al. Effects of the NO/soluble guanylate cyclase/cGMP system on the functions of human platelets. Nitric Oxide. 2018;76:71–80.CrossRefPubMedGoogle Scholar
  35. 35.
    Bodie SL, Ford I, Greaves M, et al. Thrombin-induced activation of RhoA in platelet shape change. Biochem Biophys Res Commun. 2001;287(1):71–6.CrossRefPubMedGoogle Scholar
  36. 36.
    Libersan D, Rousseau G, Merhi Y. Differential regulation of P-selectin expression by protein kinase A and protein kinase G in thrombin-stimulated human platelets. Thromb Haemost. 2003;89(2):310–7.CrossRefPubMedGoogle Scholar
  37. 37.
    Jensen BO, Selheim F, Døskeland SO, et al. Protein kinase A mediates inhibition of the thrombin-induced platelet shape change by nitric oxide. Blood. 2004;104(9):2775–82.CrossRefPubMedGoogle Scholar
  38. 38.
    Tham YK, Bernardo BC, Ooi JY, et al. Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets. Arch Toxicol. 2015;89(9):1401–38.CrossRefPubMedGoogle Scholar
  39. 39.
    Koitabashi N, Aiba T, Hesketh GG, et al. Cyclic GMP/PKG-dependent inhibition of TRPC6 channel activity and expression negatively regulates cardiomyocyte NFAT activation Novel mechanism of cardiac stress modulation by PDE5 inhibition. J Mol Cell Cardiol. 2010;48(4):713–24.CrossRefPubMedGoogle Scholar
  40. 40.
    Takimoto E, Koitabashi N, Hsu S, et al. Regulator of G protein signaling 2 mediates cardiac compensation to pressure overload and antihypertrophic effects of PDE5 inhibition in mice. J Clin Invest. 2009;119(2):408–20.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Shimokawa H, Takeshita A. Rho-kinase is an important therapeutic target in cardiovascular medicine. Arterioscler Thromb Vasc Biol. 2005;25(9):1767–75.CrossRefPubMedGoogle Scholar
  42. 42.
    Salloum FN, Chau VQ, Hoke NN, et al. Tadalafil prevents acute heart failure with reduced ejection fraction in mice. Cardiovasc Drugs Ther. 2014;28(6):493–500.CrossRefPubMedGoogle Scholar
  43. 43.
    Li N, Yuan Y, Li S, et al. PDE5 inhibitors protect against post-infarction heart failure. Front Biosci (Landmark Ed). 2016;21:1194–210.CrossRefGoogle Scholar
  44. 44.
    Gong W, Duan Q, Cai Z, et al. Chronic inhibition of cGMP-specific phosphodiesterase 5 suppresses endoplasmic reticulum stress in heart failure. Br J Pharmacol. 2013;170(7):1396–409.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Corinaldesi C, Di Luigi L, Lenzi A, et al. Phosphodiesterase type 5 inhibitors: back and forward from cardiac indications. J Endocrinol Investig. 2016;39(2):143–51.CrossRefGoogle Scholar
  46. 46.
    Gong W, Yan M, Chen J, et al. Chronic inhibition of cyclic guanosine monophosphate-specific phosphodiesterase 5 prevented cardiac fibrosis through inhibition of transforming growth factor β-induced Smad signaling. Front Med. 2014;8(4):445–55.CrossRefPubMedGoogle Scholar
  47. 47.
    Kukreja RC, Salloum FN, Das A. Cyclic guanosine monophosphate signaling and phosphodiesterase-5 inhibitors in cardioprotection. J Am Coll Cardiol. 2012;59(22):1921–7.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Frankenreiter S, Groneberg D, Kuret A, et al. Cardioprotection by ischemic postconditioning and cyclic guanosine monophosphate-elevating agents involves cardiomyocyte nitric oxide-sensitive guanylyl cyclase. Cardiovasc Res. 2018;114(6):822–9.CrossRefPubMedGoogle Scholar
  49. 49.
    Behmenburg F, Dorsch M, Huhn R, et al. Impact of mitochondrial Ca2+-sensitive potassium (mBKCa) channels in sildenafil-induced cardioprotection in rats. PLoS One. 2015;10(12):e0144737.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Francis SH, Busch JL. Corbin JD, et al. cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol Rev. 2010;62(3):525–63.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Gao Y. Conventional and unconventional mechanisms for soluble guanylyl cyclase signaling. J Cardiovasc Pharmacol. 2016;67(5):367–72.CrossRefPubMedGoogle Scholar
  52. 52.
    Thenappan T, Ormiston ML, Ryan JJ, et al. Pulmonary arterial hypertension: pathogenesis and clinical management. BMJ. 2018;j5492:360.Google Scholar
  53. 53.
    Yamamura A, Fujitomi E, Ohara N, et al. Tadalafil induces antiproliferation, apoptosis, and phosphodiesterase type 5 downregulation in idiopathic pulmonary arterial hypertension in vitro. Eur J Pharmacol. 2017;810:44–50.CrossRefPubMedGoogle Scholar
  54. 54.
    Li B, Yang L, Shen J, et al. The antiproliferative effect of sildenafil on pulmonary artery smooth muscle cells is mediated via upregulation of mitogen-activated protein kinase phosphatase-1 and degradation of extracellular signal-regulated kinase 1/2 phosphorylation. Anesth Analg. 2007;105(4):1034–41 table of contents.CrossRefPubMedGoogle Scholar
  55. 55.
    Wang J, Yang K, Xu L, et al. Sildenafil inhibits hypoxia-induced transient receptor potential canonical protein expression in pulmonary arterial smooth muscle via cGMP-PKG-PPARγ axis. Am J Respir Cell Mol Biol. 2013;49(2):231–40.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Wang C, Wang J, Zhao L, et al. Sildenafil inhibits human pulmonary artery smooth muscle cell proliferation by decreasing capacitative Ca2+ entry. J Pharmacol Sci. 2008;108(1):71–8.CrossRefPubMedGoogle Scholar
  57. 57.
    Morrell NW, Adnot S, Archer SL, et al. Cellular and molecular basis of pulmonary arterial hypertension. J Am Coll Cardiol. 2009;54(1 Suppl):S20–31.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Washington SL 3rd, Shindel AW. A once-daily dose of tadalafil for erectile dysfunction: compliance and efficacy. Drug Des Devel Ther. 2010;4:159–71.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Lane-Cordova AD, Kershaw K, Liu K, et al. Association between cardiovascular health and endothelial function with future erectile dysfunction: the multi-ethnic study of atherosclerosis. Am J Hypertens. 2017;30(8):815–21.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Özdabakoğlu O, Güllülü S, Sağ S, et al. Evaluation of arterial stiffness and cardiac function in patients with vascular erectile dysfunction: acute effects of phosphodiesterase-5 inhibitor tadalafil. Int J Impot Res. 2017;29(3):96–100.CrossRefPubMedGoogle Scholar
  61. 61.
    Kempler P, Amarenco G, Freeman R, et al. Management strategies for gastrointestinal, erectile, bladder, and sudomotor dysfunction in patients with diabetes. Diabetes Metab Res Rev. 2011;27(7):665–77.CrossRefPubMedGoogle Scholar
  62. 62.
    Qiu S, Tang Z, Deng L, et al. Comparisons of regular and on-demand regimen of PED5-Is in the treatment of ED after nerve-sparing radical prostatectomy for Prostate Cancer. Sci Rep. 2016;6:32853.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Javaroni V, Queiroz Miguez M, Burla A, et al. Response to on-demand vardenafil was improved by its daily usage in hypertensive men. Urology. 2012;80(4):858–64.CrossRefPubMedGoogle Scholar
  64. 64.
    Kim E, Seftel A, Goldfischer E, et al. Comparative efficacy of tadalafil once daily in men with erectile dysfunction who demonstrated previous partial responses to as-needed sildenafil, tadalafil, or vardenafil. Curr Med Res Opin. 2015;31(2):379–89.CrossRefPubMedGoogle Scholar
  65. 65.
    Hackett G, Krychman M, Baldwin D, et al. Coronary heart disease, diabetes, and sexuality in men. J Sex Med. 2016;13(6):887–904.CrossRefPubMedGoogle Scholar
  66. 66.
    Kratz MT, Schirmer SH, Baumhäkel M, et al. Improvement of endothelial function in a murine model of mild cholesterol-induced atherosclerosis by mineralocorticoid antagonism. Atherosclerosis. 2016;251:291–8.CrossRefPubMedGoogle Scholar
  67. 67.
    Pernow J, Jung C. The emerging role of arginase in endothelial dysfunction in diabetes. Curr Vasc Pharmacol. 2016;14(2):155–62.CrossRefPubMedGoogle Scholar
  68. 68.
    Jamshidian H, Borhan A, Kooraki S, et al. Evaluation of the efficacy of once-daily use of tadalafil vs. on-demand use. Is there a cumulative effect? J Pak Med Assoc. 2012;62(11):1195–8.PubMedGoogle Scholar
  69. 69.
    Ilic D, Hindson B, Duchesne G, et al. A randomised, double-blind, placebo-controlled trial of nightly sildenafil citrate to preserve erectile function after radiation treatment for prostate cancer. J Med Imaging Radiat Oncol. 2013;57(1):81–8.CrossRefPubMedGoogle Scholar
  70. 70.
    Choi H, Kim JH, Shim JS, et al. Comparison of the efficacy and safety of 5-mg once-daily versus 5-mg alternate-day tadalafil in men with erectile dysfunction and lower urinary tract symptoms. Int J Impot Res. 2015;27(1):33–7.CrossRefPubMedGoogle Scholar
  71. 71.
    Caglayan E, Huntgeburth M, Karasch T, et al. Phosphodiesterasetype 5 inhibition is a novel therapeutic option in Raynaud’s disease. Arch Intern Med. 2006;166:231–3.CrossRefPubMedGoogle Scholar
  72. 72.
    Fries R, Shariat K, von Wilmowsky H, Bohm M. Sildenafil in thetreatment of Raynaud’s phenomenon resistant to vasodilatory therapy. Circulation. 2005;112:2980–5.CrossRefPubMedGoogle Scholar
  73. 73.
    Rubin LJ, Badesch DB, Flemming TR, et al. Long-term treatmentwith sildenafil citrate in pulmonary arterial hypertension. TheSUPER-2 Study. Chest. 2011;140:1274–83.CrossRefPubMedGoogle Scholar
  74. 74.
    Jing ZC, Shen JY, Wu BX, et al. Vardenafil for the treatment ofpulmonary arterial hypertension. Am J Respir Crit Care Med. 2011;183:1723–9.CrossRefPubMedGoogle Scholar
  75. 75.
    Galie N, Brundage BH, Ghofrani HA, et al. Tadalafil therapy inpulmonary arterial hypertension 2009;119:2894–903.Google Scholar
  76. 76.
    Sung HH, Lee SW. Chronic low dosing of phosphodiesterase type 5 inhibitor for erectile dysfunction. Korean J Urol. 2012;53(6):377–85.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Nera A. Erectile dysfunction and cardiovascular disease: efficacyand safety of phosphodiesterase type 5 inhibitors in men with bothcondtions. Mayo Clin Proc. 2009;84:139–48.CrossRefGoogle Scholar
  78. 78.
    Oliver JJ, Dear JW, Webb DJ. Clinical potential of combinedorganic nitrate and phosphodiesterase type 5 inhibitor in treatmentresistant hypertension. Hypertension. 2010;56:62–7.CrossRefPubMedGoogle Scholar
  79. 79.
    Kloner RA. Cardiovascular effects of the 3 phosphodiesterase-5inhibitors approved for the treatment of erectile dysfunction. Circulation. 2004;110:3149–55.CrossRefPubMedGoogle Scholar
  80. 80.
    Kloner RA. Pharmacology and drug interaction effects of the phosphodiesterase 5 inhibitors: focus on alpha-blocker interactions. Am J Cardiol. 2005;96(12B):42M–6M.CrossRefPubMedGoogle Scholar
  81. 81.
    Dadkhah F, Safarinejad MR, Asgari MA, et al. Atorvastatin improves the response to sildenafil in hypercholesterolemic men with erectile dysfunction not initially responsive to sildenafil. Int J Impot Res. 2010;22(1):51–60.CrossRefPubMedGoogle Scholar
  82. 82.
    Zhang Y, Wu S. Effects of fasudil on pulmonary hypertension in clinical practice. Pulm Pharmacol Ther. 2017;46:54–63. Scholar
  83. 83.
    Elias-Al-Mamun M, Satoh K, Tanaka S, et al. Combination therapy with fasudil and sildenafil ameliorates monocrotaline-induced pulmonary hypertension and survival in rats. Circ J. 2014;78(4):967–76.CrossRefPubMedGoogle Scholar
  84. 84.
    El-Sisi AE, Sokar SS, Abu-Risha SE, et al. Combination of tadalafil and diltiazem attenuatesrenal ischemia reperfusion-induced acute renal failure in rats. Biomed Pharmacother. 2016;84:861–9.CrossRefPubMedGoogle Scholar
  85. 85.
    Zullig LL, Ramos K3, Bosworth HB. Improving medication adherence in coronary heart disease. Curr Cardiol Rep. 2017;19(11):113.CrossRefPubMedGoogle Scholar
  86. 86.
    Kim J, Lee HS, Nam CM, et al. Effects of statin intensity and adherence on the long-term prognosis after acute ischemic stroke. Stroke. 2017;48(10):2723–30.CrossRefPubMedGoogle Scholar
  87. 87.
    Xie G, Sun Y, Myint PK, et al. Six-month adherence to statin use and subsequent risk of major adverse cardiovascular events (MACE) in patients discharged with acute coronary syndromes. Lipids Health Dis. 2017;16(1):155.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Sokol MC, McGuigan KA, Verbrugge RR, et al. Impact of medication adherence on hospitalization risk and healthcare cost. Med Care. 2005 Jun;43(6):521–30.CrossRefPubMedGoogle Scholar
  89. 89.
    Rosen RC. Sexual dysfunction as an obstacle to compliance with antihypertensive therapy. Blood Press Suppl. 1997;1:47–51.PubMedGoogle Scholar
  90. 90.
    Feldman HA, Goldstein I, Hatzichristou DG, et al. Impotence and its medical and psychosocial correlates: results of the Massachusetts Male Aging Study. J Urol. 1994;151:54–61.CrossRefPubMedGoogle Scholar
  91. 91.
    Fogari R, Zoppi A, Poletti L, et al. Sexual activity in hypertensive men treated with valsartan or carvedilol: a crossover study. Am J Hypertens. 2001;14:27–31.CrossRefPubMedGoogle Scholar
  92. 92.
    Voils CI, Sandelowski M, Dahm P, et al. Selective adherence to antihypertensive medications as a patient-driven means to preserving sexual potency. Patient Prefer Adherence. 2008;2:201–6.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Kimura M, Shimura S, Tai T, et al. A web-based survey of erection hardness score and its relationship to aging, sexual behavior, confidence, and risk factors in Japan. Sex Med. 2013;1(2):76–86.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Intili H, Nier D. Self-esteem and depression in men who present with erectile dysfunction. Urol Nurs. 1998;18:185–7.PubMedGoogle Scholar
  95. 95.
    Martin-Morales A, Meijide Rico F, Garcia Gonzalez JI, et al. Psychological impact of erectile dysfunction on self-esteem and self-confidence. Actas Urol Esp. 2005;29:493–8.CrossRefPubMedGoogle Scholar
  96. 96.
    Shabsigh R, Klein LT, Seidman S, et al. Increased incidence of depressive symptoms in men with erectile dysfunction. Urology. 1998;52:848–52.CrossRefPubMedGoogle Scholar
  97. 97.
    Hare DL, Toukhsati SR, Johansson P, et al. Depression and cardiovascular disease: a clinical review. Eur Heart J. 2014;35(21):1365–72.CrossRefPubMedGoogle Scholar
  98. 98.
    Ju A, Hanson CS, Banks E, et al. Patient beliefs and attitudes to taking statins: systematic review of qualitative studies. Br J Gen Pract. 2018;68(671):e408–19.CrossRefPubMedGoogle Scholar
  99. 99.
    Janssen-Niemeijer AJ, Visse M, Van Leeuwen R, et al. The role of spirituality in lifestyle changing among patients with chronic cardiovascular diseases: a literature review of qualitative studies. J Relig Health. 2017;56(4):1460–77.CrossRefPubMedGoogle Scholar
  100. 100.
    Mazzola CR, Deveci S, Teloken P, et al. Exploring the association between erectile rigidity and treatment adherence with sildenafil. J Sex Med. 2013;10(7):1861–6.CrossRefPubMedGoogle Scholar
  101. 101.
    Smith WB 2nd, McCaslin IR, Gokce A, et al. PDE5 inhibitors: considerations for preference and long-term adherence. Int J Clin Pract. 2013;67(8):768–80.CrossRefPubMedGoogle Scholar
  102. 102.
    Peng Z, Yang L, Dong Q, et al. Efficacy and safety of tadalafil once-a-day versus tadalafil on-demand in patients with erectile dysfunction: a systematic review and meta-analyses. Urol Int. 2017;99(3):343–52.CrossRefPubMedGoogle Scholar
  103. 103.
    Bansal UK, Jones C, Fuller TW, et al. The efficacy of tadalafil daily vs on demand in the treatment of erectile dysfunction: a systematic review and meta-analysis. Urology. 2018;112:6–11.CrossRefPubMedGoogle Scholar
  104. 104.
    Bosworth HB, Blalock DV, Hoyle RH, et al. The role of psychological science in efforts to improve cardiovascular medication adherence. Am Psychol. 2018;73(8):968–80.CrossRefPubMedGoogle Scholar
  105. 105.
    Costa P, Grandmottet G, Mai HD, et al. Impact of a first treatment with phosphodiesterase inhibitors on men and partners’ quality of sexual life: results of a prospective study in primary care. J Sex Med. 2013;10(7):1850–60.CrossRefPubMedGoogle Scholar
  106. 106.
    Gong B, Ma M, Xie W, et al. Direct comparison of tadalafil with sildenafil for the treatment of erectile dysfunction: a systematic review and meta-analysis. Int Urol Nephrol. 2017;49(10):1731–40.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Tinel H, Stelte-Ludwig B, Hütter J, et al. Pre-clinical evidence for the use of phosphodiesterase-5 inhibitors for treating benign prostatic hyperplasia and lower urinary tract symptoms. BJU Int. 2006;98(6):1259–63.CrossRefPubMedGoogle Scholar
  108. 108.
    Brousil P, Shabbir M, Zacharakis E, et al. PDE-5 inhibitors for BPH-associated LUTS. Curr Drug Targets. 2015;16(11):1180–6.CrossRefPubMedGoogle Scholar
  109. 109.
    Cellek S, Cameron NE, Cotter MA, et al. Microvascular dysfunction and efficacy of PDE5 inhibitors in BPH-LUTS. Nat Rev Urol. 2014;11(4):231–41.CrossRefPubMedGoogle Scholar
  110. 110.
    Seftel AD, de la Rosette J, Birt J, et al. Coexisting lower urinary tract symptoms and erectile dysfunction: a systematic review of epidemiological data. Int J Clin Pract. 2013;67(1):32–45.CrossRefPubMedGoogle Scholar
  111. 111.
    Korneyev IA, Alexeeva TA, Al-Shukri SH, et al. Prevalence and risk factors for erectile dysfunction and lower urinary tract symptoms in Russian Federation men: analysis from a national population-based multicenter study. Int J Impot Res. 2016;28(2):74–9.CrossRefPubMedGoogle Scholar
  112. 112.
    Song J, Shao Q, Tian Y, et al. Lower urinary tract symptoms, erectile dysfunction, and their correlation in men aged 50 years and above: a cross-sectional survey in Beijing, China. Med Sci Monit. 2014;20:2806–10.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Gacci M, Carini M, Salvi M, et al. Management of benign prostatic hyperplasia: role of phosphodiesterase-5 inhibitors. Drugs Aging. 2014;31(6):425–39.CrossRefPubMedGoogle Scholar
  114. 114.
    Mónica FZ, Antunes E. Stimulators and activators of soluble guanylate cyclase for urogenital disorders. Nat Rev Urol. 2018;15(1):42–54.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Urology, Peking Union Medical College Hospital, Peking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina

Personalised recommendations