Chemical and Petroleum Engineering

, Volume 55, Issue 5–6, pp 444–451 | Cite as

Quantitative Analysis of the Spraying Kinetics of Charged Particles in a Cooling Unit

  • E. V. SemenovEmail author
  • A. A. Slavyanskii
  • B. S. Babakin
  • M. I. Voronin
  • S. B. Babakin
  • A. G. Belozerov
  • A. N. Suchkov

Efficient cooling of heat-generating equipment components is a crucial problem for many industrial sectors. This problem is traditionally solved by using liquid sprayers with low cooling efficiency (because of drop recoil). Electric sprayers were proposed for implementation into industry to avoid recoil of fragmented charged drops because of electrical attraction that provided a dense precipitate of drops on a heated conducting surface and further efficient cooling due to liquid evaporation. Fundamental physical laws are used to formulate a mathematical model (in analytical form) and to obtain a practically useful solution to the fragmentation of a test drop by inertial, electric-field, and surface-tension forces. Results of numerical and graphical simulation of this process are given.


cooling electrostatic field inertia surface tension drop fragmentation 


  1. 1.
    E. A. Lapteva, E. Yu. Stolyarova, and A. G. Laptev, “Thermohydraulic efficiency of the process of cooling of water in miniature cooling towers with regular packing,” Khim. Neftegazov. Mashinostr., No. 3, 16–17 (2018).Google Scholar
  2. 2.
    A. I. Grigor′ev and S. O. Shiryaeva, “Capillary instabilities of charged drop surfaces and electrodispersion of liquids (Review),” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 3, 3–22 (1994).Google Scholar
  3. 3.
    K. Aslanov, “Theory of the breakup of a liquid jet into drops,” Zh. Tekh. Fiz.,69, No. 11, 132–133 (1999).Google Scholar
  4. 4.
    N. V. Shikhov, A. I. Urvansev, and A. A. Mushketov, “On the increase in capacity of drug-type corona-discharge electrostatic separators,” in: Ore Enrichment [in Russian], Special Issue For the XXI IMPC (2000), pp. 62–65.Google Scholar
  5. 5.
    N. V. Shikhov, A. I. Urvantsev, and G. V. Zaitsev, “Results of research and practice of mineral ore beneficiation by electrical separation,” Izv. Vyssh. Uchebn. Zaved., Gorn. Zh., No. 5, 37–51 (2005).Google Scholar
  6. 6.
    S. O. Shiryaeva, “Influence of charge relaxation on the capillary disintegration of a jet of a viscous dielectric liquid placed in an electrostatic field collinear with the axis of the jet,” Zh. Tekh. Fiz.,81, No. 3, 18–26 (2011).Google Scholar
  7. 7.
    W. Deng and A. Gomez, “Electrospray cooling for microelectronics,” Int. J. Heat Mass Transfer, No. 54, 2270–2275 (2011).CrossRefGoogle Scholar
  8. 8.
    A. I. Zhakin and P. A. Belov, “Experimental study of the outflow of charged drops and jets,” Electron. Obrab. Mater.,49, No. 3, 25–34 (2013).Google Scholar
  9. 9.
    B. S. Babakin, M. I. Voronin, E. V. Semenov, S. B. Babakin, and V. A. Vygodin, “Modeling the processes of pneumatic cryoelectroseparation of a dispersed raw material of biological origin,” Vestn. Mezhdunar. Akad. Kholoda, No. 2, 62–66 (2013).Google Scholar
  10. 10.
    J. Grifoll and J. Rosell-Llompart, “Continuous droplets’ charge method for the Lagrangian simulation of electrostatic sprays,” J. Electrostat., No. 72, 357–364 (2014).CrossRefGoogle Scholar
  11. 11.
    M. Yu. Stepkina and O. B. Kudryashova, “Control of condensed phase sedimentation using the electric field,” Izv. Tomsk. Politekh. Univ., No. 5 (326), 28–37 (2015).Google Scholar
  12. 12.
    O. B. Kudryashova, M. Yu. Stepkina, N. V. Korovina, et al., “Atomization of nanopowders for adsorption of toxic substances,” Inzh.-Fiz. Zh.,88, No. 4, 808–813 (2015).Google Scholar
  13. 13.
    E. Semenov, B. Babakin, G. Belozerov, et al., “Мodeling the processes of pneumatic cryoelectroseparation of a dispersed raw material of biological origin,” in: International Congr. on Refrigeration Technology ICR, Aug. 16–22, Yokohama, Japan (2015).Google Scholar
  14. 14.
    N. A. Slezkin, Dynamics of Viscous Uncompressible Liquids [in Russian], GITTL (1955).Google Scholar
  15. 15.
    V. P. Vereshchagin, V. I. Levitov, G. Z. Mirzabekyan, and M. M. Pashin, Principles of Electron-Gas Dynamics of Disperse Systems [in Russian], Energiya, Moscow (1974).Google Scholar
  16. 16.
    G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge (1970).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • E. V. Semenov
    • 1
    Email author
  • A. A. Slavyanskii
    • 1
  • B. S. Babakin
    • 2
  • M. I. Voronin
    • 2
  • S. B. Babakin
    • 3
  • A. G. Belozerov
    • 3
  • A. N. Suchkov
    • 3
  1. 1.K. G. Razumovskii Moscow State University of Technology and Management (First Cossack University)MoscowRussia
  2. 2.Moscow State University of Food ProductionMoscowRussia
  3. 3.All-Russian Scientific Research Institute of Refrigeration Industry, Branch of V. M. Gorbatov Federal Scientific Center of Food SystemsMoscowRussia

Personalised recommendations