Advertisement

Mechanochemical Method and Equipment Design for Obtaining Alcoxysilanes

  • S. M. ChistovalovEmail author
  • V. M. Kotov
  • A. A. Anisimov
  • M. N. Temnikov
  • P. V. Zhemchugov
  • A. M. Muzafarov
RESEARCH, DESIGN, NUMERICAL ANALYSES, AND OPERATING EXPERIENCE PROCESSES AND EQUIPMENT OF CHEMICAL AND OIL-AND-GAS TECHNOLOGIES

The article describes a fundamentally new one-step chlorine free mechanochemical method for the direct synthesis of alkoxysilanes. The essence of the developed method consists in the direct interaction of untreated silicon with a dispersion up to 5 mm with an appropriate aliphatic alcohol containing from 1 to 4 carbon atoms in the presence of a copper-containing catalyst at a temperature of 200–300 °C in a vibrating fluidized bed of milling bodies in a wide vibration acceleration range. The experiments proved the principal possibility of its realization in a developed vibratory reactor, whose design solutions are adaptable to industrial application. It is shown that mechanoactivation plays a major role in the developed method of direct synthesis and is in fact the basis of a fundamentally new technological process.

Keywords

alkoxysilanes aliphatic alcohol copper-containing catalyst mechanoactivation vibration frequency amplitude acceleration of oscillations 

References

  1. 1.
    Pat. RF 2332256, B01J8/10, Reactor for the Direct Synthesis of Alkoxysilanes [in Russian], A. S. Gorshkov, A. S. Dmitriev, G. A. Dubrovskaya, et al., Bull. No. 24, August 27 (2008).Google Scholar
  2. 2.
    Pat. US 6.090.965, Removal of Dissolvent Silicates from Alcohol-Silicon Direct Synthesis Solvents, K. M. Lewis and Hua Yu (2000).Google Scholar
  3. 3.
    M. Okamoto, Res. Chem. Intermed., 32, 317–330 (2006).CrossRefGoogle Scholar
  4. 4.
    G. J. Wang, F. X. Zhang, G. Y. Liu, and X. N. Liu, Adv. Mater. Res., 455, 80–86 (2012).CrossRefGoogle Scholar
  5. 5.
    E. Suzuki, M. Okamoto, and Y. Ono, “Effect of oxide layers on the reaction of silicon with methanol into trimethoxysilane using copper copper (I) chloride,” Solid State Ionics, 47, 97–104 (1991).CrossRefGoogle Scholar
  6. 6.
    Pat. US 5.362.897, Process for Producing Trialkoxysilane, Katsuyoshi Harada and Yashinori Yamada (1994).Google Scholar
  7. 7.
    F. D. Mendicino, H. E. Burtrug, P. J. Burns, et al., “Development of direct trimethoxysilane synthesis from a laboratory test tube to production,” in: Silicon for the Chemical Industry, IV Geiranger, Norway, June 3–5 (1998), pp. 275–295.Google Scholar
  8. 8.
    E. G. Avvakumov and L. G. Karakchiev, “Mechanochemical synthesis as a method of obtaining nanosized particles of oxide materials”, Khimiya v Interesakh Ustoichivogo Razvitiya, 12, 287–292 (2004).Google Scholar
  9. 9.
    V. A. Chlenov and N. V. Mikhailov, Vibrating Fluidized Bed [in Russian], Nauka, Moscow (1972).Google Scholar
  10. 10.
    Pat. RF 2628299 C1, A Method for Producing Alkoxysilanes [in Russian], D. N. Kholodkov, A. A. Anisimov, A. S. Zhil’tsv, et al., Bull. No. 23 (2017).Google Scholar
  11. 11.
    S. M. Chistovalov and A. N. Chernov, “Creation of multifunctional vibratory devices for low-tonnage chemical-technological processes”, Khim. Neft. Mashinostr., No. 3, 35–36 (1996).Google Scholar
  12. 12.
    S. M. Chistovalov and E. Yu. Baranova, “Design solutions of a multifunctional apparatus for low-tonnage chemistry”, Khim. Neftegaz. Mashinostr., No. 4, 7–10 (2014).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • S. M. Chistovalov
    • 1
  • V. M. Kotov
    • 1
  • A. A. Anisimov
    • 1
  • M. N. Temnikov
    • 1
  • P. V. Zhemchugov
    • 1
  • A. M. Muzafarov
    • 1
  1. 1.A. N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of SciencesMoscowRussia

Personalised recommendations