Advertisement

Chemical and Petroleum Engineering

, Volume 54, Issue 9–10, pp 644–650 | Cite as

A Mathematical Description of Mass Transfer and a Technique of Calculating the Local Mass-Transfer Coefficients in the Inter-Membrane Channel of Baromembrane Roll Elements

  • S. I. LazarevEmail author
  • O. A. Abonosimov
  • A. A. Levin
  • N. N. Ignatov
  • S. I. Kotenev
Article
  • 14 Downloads

A mathematical description of the electrobaromembrane process using an approach based on the Nernst–Planck and Poisson–Boltzmann equations is presented. The hydrodynamic conditions in the intermembrane channel is taken into account by a dimensionless equation based on the Reynolds criterion and a technique is presented for determining electrobaromembrane separation of solutions, taking into account the kinetics of mass transfer and the hydrodynamics of the flow of a solution in an intermembrane channel. Through the use of the technique the local mass-transfer coefficients along the length of the channel of the membrane module may be determined. The technique may also be used to predict and develop laboratory, pilot and industrial electromembrane instruments and plants.

Key words

mathematical description equation technique reverse osmosis element industrial solutions 

References

  1. 1.
    S. S. Grishin, On the question of mathematical simulation of membrane cleaning processes, Al’ternativnaya Energetika i Ekologiya, No. 10, 57−61 (2013).Google Scholar
  2. 2.
    L. L. Murav’ev, Simulation of the operation of reverse osmosis devices with filtering roll elements, Khimiya i Tekhnologiya Vody, 11, No. 1, 107−109 (1989).Google Scholar
  3. 3.
    V. L. Golovashin, A mathematical model of joint electrothermal-mass transfer in electrobaromembrane systems, Vest. TGTU, No. 4, 734−746 (2014).Google Scholar
  4. 4.
    I. V. Khorokhorina, Kinetics and Structural Characteristics of Membranes for Electro-ultrafiltration Cleaning of Industrial Solutions from Anion Surfactants [in Russian], Dissertation for the Degree of Candidate in Technical Sciences, Tambov (2014).Google Scholar
  5. 5.
    A. S. Gorbachev, Kinetics of Electrobaromembrane Separation of Aqueous Sulfate-containing Solutions (in the production of optical bleaches) [in Russian], Dissertation for the Degree of Candidate in Technical Sciences, Tambov (2006).Google Scholar
  6. 6.
    S. I. Lazarev and D. O. Abonosimov, Application of membrane technologies in the cleaning of sewage waters of electroplating plants, Vest. TGTU, 20, No. 2, 306−311 (2014).Google Scholar
  7. 7.
    S. I. Lazarev, D. O. Abonosimov, M. A. Ryabinskii, and A. S. Gorbachev, A model for the calculation of mass transfer in electrobaromembrane roll-type instruments, Izv.Vuzov. Khimiya i Khimicheskaya Tekhnologiya, 51, Vyp. 5, 109−111 (2008).Google Scholar
  8. 8.
    D. O. Abonosimov, S. I. Lazarev, A. M. Akulinchev, and O. A. Abonosimov, A model for the design of baromembrane roll-type instruments, Vest. Tambov. Univ. Ser.: Yestyestvennye i Tekh. Nauki, 17, Vyp. 6, 1580−1584 (2012).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • S. I. Lazarev
    • 1
    Email author
  • O. A. Abonosimov
    • 1
  • A. A. Levin
    • 1
  • N. N. Ignatov
    • 1
  • S. I. Kotenev
    • 1
  1. 1.Tambov State Technical UniversityTambovRussia

Personalised recommendations