Advertisement

Genetic predisposition and chromosome instability in neuroblastoma

  • Gian Paolo ToniniEmail author
  • Mario CapassoEmail author
Article
  • 90 Downloads

Abstract

Neuroblastoma (NB) is a pediatric tumor of embryonic origin. About 1–2% of all NBs are familial cases, and genetic predisposition is suspected for the remaining cases. During the last decade, genome-wide association studies (GWAS) and high-throughput sequencing approaches have been used to identify associations among common and rare genetic variants and NB risk. Substantial data has been produced by large patient cohorts that implicate various genes in NB tumorigenesis, such as CASC15, BARD1, CHEK2, LMO1, LIN28B, AXIN2, BRCA1, TP53, SMARCA4, and CDK1NB. NB, as well as other pediatric cancers, has few recurrent mutations but several copy number variations (CNVs). Almost all NBs show both numerical and structural CNVs. The proportion between numerical and structural CNVs differs between localized and metastatic tumors, with a greater prevalence of structural CNVs in metastatic NB. This genomic chaos frequently identified in NBs suggests that chromosome instability (CIN) could be one of the major actors in NB oncogenesis. Interestingly, many NB-predisposing variants occur in genes involved in the control of genome stability, mitosis, and normal chromosome separation. Here, we discuss the relationship between genetic predisposition and CIN in NB.

Keywords

Neuroblastoma Chromosome instability Allelic variance Mutation SNP 

Abbreviations

CIN

Chromosome instability

GWAS

Genome-wide association studies

NGS

Next generation sequencing

SNP

Single nucleotide polymorphisms

NCCs

Neural crest cells

CNVs

Copy number variations

HSCR

Hirschsprung disease

CCHS

Congenital central hypoventilation syndrome

lncRNA

Long noncoding RNA

m-CGH

Microarray-comparative genomic hybridization

Notes

Funding information

The work has been supported by the Italian Neuroblastoma Foundation (to GPT and MC), Associazione Italiana per la Ricerca sul Cancro (Grant No. 19255 to M.C.), Regione Campania “SATIN” grant no. 2018–2020 (to M.C.). Fondazione Italiana per la Lotta al Neuroblastoma (to M.C.); Associazione Oncologia Pediatrica e Neuroblastoma (to M.C.)

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Delloye-Bourgeois, C., & Castellani, V. (2019). Hijacking of embryonic programs by neural crest-derived neuroblastoma: from physiological migration to metastatic dissemination. Frontiers in Molecular Neuroscience, 12, 52.  https://doi.org/10.3389/fnmol.2019.00052.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Luksch, R., Castellani, M. R., Collini, P., De Bernardi, B., Conte, M., Gambini, C., et al. (2016). Neuroblastoma (peripheral neuroblastic tumours). Critical Reviews in Oncology/Hematology, 107, 163–181.  https://doi.org/10.1016/j.critrevonc.2016.10.001.CrossRefPubMedGoogle Scholar
  3. 3.
    Capasso, M., & Diskin, S. J. (2010). Genetics and genomics of neuroblastoma. Cancer Treatment and Research, 155, 65–84.  https://doi.org/10.1007/978-1-4419-6033-7_4.CrossRefPubMedGoogle Scholar
  4. 4.
    Russo, R., Cimmino, F., Pezone, L., Manna, F., Avitabile, M., Langella, C., Koster, J., Casale, F., Raia, M., Viola, G., Fischer, M., Iolascon, A., & Capasso, M. (2017). Kinome expression profiling of human neuroblastoma tumors identifies potential drug targets for ultra high-risk patients. Carcinogenesis, 38(10), 1011–1020.  https://doi.org/10.1093/carcin/bgx077.CrossRefPubMedGoogle Scholar
  5. 5.
    Formicola, D., Petrosino, G., Lasorsa, V. A., Pignataro, P., Cimmino, F., Vetrella, S., Longo, L., Tonini, G. P., Oberthuer, A., Iolascon, A., Fischer, M., & Capasso, M. (2016). An 18 gene expression-based score classifier predicts the clinical outcome in stage 4 neuroblastoma. Journal of Translational Medicine, 14(1), 142–149.  https://doi.org/10.1186/s12967-016-0896-7.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Barbieri, E., De Preter, K., Capasso, M., Johansson, P., Man, T. K., Chen, Z., et al. (2013). A p53 drug response signature identifies prognostic genes in high-risk neuroblastoma. PLoS One, 8(11), e79843.  https://doi.org/10.1371/journal.pone.0079843.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Grobner, S. N., Worst, B. C., Weischenfeldt, J., Buchhalter, I., Kleinheinz, K., Rudneva, V. A., et al. (2018). The landscape of genomic alterations across childhood cancers. Nature, 555(7696), 321–327.  https://doi.org/10.1038/nature25480.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Zhang, J., Walsh, M. F., Wu, G., Edmonson, M. N., Gruber, T. A., Easton, J., Hedges, D., Ma, X., Zhou, X., Yergeau, D. A., Wilkinson, M. R., Vadodaria, B., Chen, X., McGee, R., Hines-Dowell, S., Nuccio, R., Quinn, E., Shurtleff, S. A., Rusch, M., Patel, A., Becksfort, J. B., Wang, S., Weaver, M. S., Ding, L., Mardis, E. R., Wilson, R. K., Gajjar, A., Ellison, D. W., Pappo, A. S., Pui, C. H., Nichols, K. E., & Downing, J. R. (2015). Germline mutations in predisposition genes in pediatric cancer. The New England Journal of Medicine, 373(24), 2336–2346.  https://doi.org/10.1056/NEJMoa1508054.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Trochet, D., Bourdeaut, F., Janoueix-Lerosey, I., Deville, A., de Pontual, L., Schleiermacher, G., Coze, C., Philip, N., Frébourg, T., Munnich, A., Lyonnet, S., Delattre, O., & Amiel, J. (2004). Germline mutations of the paired-like homeobox 2B (PHOX2B) gene in neuroblastoma. American Journal of Human Genetics, 74(4), 761–764.  https://doi.org/10.1086/383253.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Perri, P., Bachetti, T., Longo, L., Matera, I., Seri, M., Tonini, G. P., & Ceccherini, I. (2005). PHOX2B mutations and genetic predisposition to neuroblastoma. Oncogene, 24(18), 3050–3053.  https://doi.org/10.1038/sj.onc.1208532.CrossRefPubMedGoogle Scholar
  11. 11.
    Rohrer, T., Trachsel, D., Engelcke, G., & Hammer, J. (2002). Congenital central hypoventilation syndrome associated with Hirschsprung’s disease and neuroblastoma: case of multiple neurocristopathies. Pediatric Pulmonology, 33(1), 71–76.  https://doi.org/10.1002/ppul.10031.CrossRefPubMedGoogle Scholar
  12. 12.
    Amiel, J., Laudier, B., Attie-Bitach, T., Trang, H., de Pontual, L., Gener, B., et al. (2003). Polyalanine expansion and frameshift mutations of the paired-like homeobox gene PHOX2B in congenital central hypoventilation syndrome. Nature Genetics, 33(4), 459–461.  https://doi.org/10.1038/ng1130.CrossRefPubMedGoogle Scholar
  13. 13.
    Pattyn, A., Morin, X., Cremer, H., Goridis, C., & Brunet, J. F. (1999). The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature, 399(6734), 366–370.  https://doi.org/10.1038/20700.CrossRefPubMedGoogle Scholar
  14. 14.
    Mosse, Y. P., Laudenslager, M., Khazi, D., Carlisle, A. J., Winter, C. L., Rappaport, E., & Maris, J. M. (2004). Germline PHOX2B mutation in hereditary neuroblastoma. American Journal of Human Genetics, 75(4), 727–730.  https://doi.org/10.1086/424530.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Raabe, E. H., Laudenslager, M., Winter, C., Wasserman, N., Cole, K., LaQuaglia, M., et al. (2008). Prevalence and functional consequence of PHOX2B mutations in neuroblastoma. Oncogene, 27(4), 469–476.  https://doi.org/10.1038/sj.onc.1210659.CrossRefPubMedGoogle Scholar
  16. 16.
    van Limpt, V., Schramm, A., van Lakeman, A., Sluis, P., Chan, A., van Noesel, M., et al. (2004). The Phox2B homeobox gene is mutated in sporadic neuroblastomas. Oncogene, 23(57), 9280–9288.  https://doi.org/10.1038/sj.onc.1208157.CrossRefPubMedGoogle Scholar
  17. 17.
    Serra, A., Haberle, B., Konig, I. R., Kappler, R., Suttorp, M., Schackert, H. K., et al. (2008). Rare occurrence of PHOX2b mutations in sporadic neuroblastomas. Journal of Pediatric Hematology/Oncology, 30(10), 728–732.  https://doi.org/10.1097/MPH.0b013e3181772141.CrossRefPubMedGoogle Scholar
  18. 18.
    Bachetti, T., & Ceccherini, I. (2019). Causative and common PHOX2B variants define a broad phenotypic spectrum. Clinical Genetics.  https://doi.org/10.1111/cge.13633.CrossRefGoogle Scholar
  19. 19.
    Pei, D., Luther, W., Wang, W., Paw, B. H., Stewart, R. A., & George, R. E. (2013). Distinct neuroblastoma-associated alterations of PHOX2B impair sympathetic neuronal differentiation in zebrafish models. PLoS Genetics, 9(6), e1003533.  https://doi.org/10.1371/journal.pgen.1003533.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Reiff, T., Tsarovina, K., Majdazari, A., Schmidt, M., del Pino, I., & Rohrer, H. (2010). Neuroblastoma phox2b variants stimulate proliferation and dedifferentiation of immature sympathetic neurons. The Journal of Neuroscience, 30(3), 905–915.  https://doi.org/10.1523/JNEUROSCI.5368-09.2010.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    van Limpt, V., Chan, A., Schramm, A., Eggert, A., & Versteeg, R. (2005). Phox2B mutations and the Delta-Notch pathway in neuroblastoma. Cancer Letters, 228(1–2), 59–63.  https://doi.org/10.1016/j.canlet.2005.02.050.CrossRefPubMedGoogle Scholar
  22. 22.
    Revet, I., Huizenga, G., Chan, A., Koster, J., Volckmann, R., van Sluis, P., Øra, I., Versteeg, R., & Geerts, D. (2008). The MSX1 homeobox transcription factor is a downstream target of PHOX2B and activates the Delta-Notch pathway in neuroblastoma. Experimental Cell Research, 314(4), 707–719.  https://doi.org/10.1016/j.yexcr.2007.12.008.CrossRefPubMedGoogle Scholar
  23. 23.
    Boeva, V., Louis-Brennetot, C., Peltier, A., Durand, S., Pierre-Eugene, C., Raynal, V., et al. (2017). Heterogeneity of neuroblastoma cell identity defined by transcriptional circuitries. Nature Genetics, 49(9), 1408–1413.  https://doi.org/10.1038/ng.3921.CrossRefPubMedGoogle Scholar
  24. 24.
    Longo, L., Panza, E., Schena, F., Seri, M., Devoto, M., Romeo, G., Bini, C., Pappalardo, G., Tonini, G. P., & Perri, P. (2007). Genetic predisposition to familial neuroblastoma: identification of two novel genomic regions at 2p and 12p. Human Heredity, 63(3–4), 205–211.  https://doi.org/10.1159/000099997.CrossRefPubMedGoogle Scholar
  25. 25.
    Mosse, Y. P., Laudenslager, M., Longo, L., Cole, K. A., Wood, A., Attiyeh, E. F., et al. (2008). Identification of ALK as a major familial neuroblastoma predisposition gene. Nature, 455(7215), 930–935.  https://doi.org/10.1038/nature07261.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Chen, Y., Takita, J., Choi, Y. L., Kato, M., Ohira, M., Sanada, M., Wang, L., Soda, M., Kikuchi, A., Igarashi, T., Nakagawara, A., Hayashi, Y., Mano, H., & Ogawa, S. (2008). Oncogenic mutations of ALK kinase in neuroblastoma. Nature, 455(7215), 971–974.  https://doi.org/10.1038/nature07399.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Janoueix-Lerosey, I., Lequin, D., Brugieres, L., Ribeiro, A., de Pontual, L., Combaret, V., et al. (2008). Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature, 455(7215), 967–970.  https://doi.org/10.1038/nature07398.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    George, R. E., Sanda, T., Hanna, M., Frohling, S., Luther 2nd, W., Zhang, J., et al. (2008). Activating mutations in ALK provide a therapeutic target in neuroblastoma. Nature, 455(7215), 975–978.  https://doi.org/10.1038/nature07397.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Bresler, S. C., Weiser, D. A., Huwe, P. J., Park, J. H., Krytska, K., Ryles, H., Laudenslager, M., Rappaport, E. F., Wood, A. C., McGrady, P., Hogarty, M. D., London, W. B., Radhakrishnan, R., Lemmon, M. A., & Mossé, Y. P. (2014). ALK mutations confer differential oncogenic activation and sensitivity to ALK inhibition therapy in neuroblastoma. Cancer Cell, 26(5), 682–694.  https://doi.org/10.1016/j.ccell.2014.09.019.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    de Pontual, L., Kettaneh, D., Gordon, C. T., Oufadem, M., Boddaert, N., Lees, M., Balu, L., Lachassinne, E., Petros, A., Mollet, J., Wilson, L. C., Munnich, A., Brugière, L., Delattre, O., Vekemans, M., Etchevers, H., Lyonnet, S., Janoueix-Lerosey, I., & Amiel, J. (2011). Germline gain-of-function mutations of ALK disrupt central nervous system development. Human Mutation, 32(3), 272–276.  https://doi.org/10.1002/humu.21442.CrossRefPubMedGoogle Scholar
  31. 31.
    Mosse, Y. P., Lim, M. S., Voss, S. D., Wilner, K., Ruffner, K., Laliberte, J., et al. (2013). Safety and activity of crizotinib for paediatric patients with refractory solid tumours or anaplastic large-cell lymphoma: a children’s oncology group phase 1 consortium study. The Lancet Oncology, 14(6), 472–480.  https://doi.org/10.1016/S1470-2045(13)70095-0.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Aubry, A., Galiacy, S., & Allouche, M. (2019). Targeting ALK in cancer: therapeutic potential of proapoptotic peptides. Cancers (Basel), 11(3).  https://doi.org/10.3390/cancers11030275.CrossRefGoogle Scholar
  33. 33.
    Debruyne, D. N., Dries, R., Sengupta, S., Seruggia, D., Gao, Y., Sharma, B., Huang, H., Moreau, L., McLane, M., Day, D. S., Marco, E., Chen, T., Gray, N. S., Wong, K. K., Orkin, S. H., Yuan, G. C., Young, R. A., & George, R. E. (2019). BORIS promotes chromatin regulatory interactions in treatment-resistant cancer cells. Nature, 572(7771), 676–680.  https://doi.org/10.1038/s41586-019-1472-0.CrossRefPubMedGoogle Scholar
  34. 34.
    De Mariano, M., Gallesio, R., Chierici, M., Furlanello, C., Conte, M., Garaventa, A., et al. (2015). Identification of GALNT14 as a novel neuroblastoma predisposition gene. Oncotarget, 6(28), 26335–26346.  https://doi.org/10.18632/oncotarget.4501.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Maris, J. M., Weiss, M. J., Mosse, Y., Hii, G., Guo, C., White, P. S., Hogarty, M. D., Mirensky, T., Brodeur, G. M., Rebbeck, T. R., Urbanek, M., & Shusterman, S. (2002). Evidence for a hereditary neuroblastoma predisposition locus at chromosome 16p12-13. Cancer Research, 62(22), 6651–6658.PubMedGoogle Scholar
  36. 36.
    Perri, P., Longo, L., Cusano, R., McConville, C. M., Rees, S. A., Devoto, M., et al. (2002). Weak linkage at 4p16 to predisposition for human neuroblastoma. Oncogene, 21(54), 8356–8360.  https://doi.org/10.1038/sj.onc.1206009.CrossRefPubMedGoogle Scholar
  37. 37.
    Lo Cunsolo, C., Iolascon, A., Cavazzana, A., Cusano, R., Strigini, P., Mazzocco, K., Giordani, L., Massimo, L., de Bernardi, B., Conte, M., & Tonini, G. P. (1999). Neuroblastoma in two siblings supports the role of 1p36 deletion in tumor development. Cancer Genetics and Cytogenetics, 109(2), 126–130.  https://doi.org/10.1016/s0165-4608(98)00154-x.CrossRefPubMedGoogle Scholar
  38. 38.
    Tonini, G. P., Lo Cunsolo, C., Cusano, R., Iolascon, A., Dagnino, M., Conte, M., Milanaccio, C., de Bernardi, B., Mazzocco, K., & Scaruffi, P. (1997). Loss of heterozygosity for chromosome 1p in familial neuroblastoma. European Journal of Cancer, 33(12), 1953–1956.  https://doi.org/10.1016/s0959-8049(97)00288-8.CrossRefPubMedGoogle Scholar
  39. 39.
    Longo, L., Tonini, G. P., Ceccherini, I., & Perri, P. (2005). Oligogenic inheritance in neuroblastoma. Cancer Letters, 228(1–2), 65–69.  https://doi.org/10.1016/j.canlet.2004.12.052.CrossRefPubMedGoogle Scholar
  40. 40.
    Kamihara, J., Bourdeaut, F., Foulkes, W. D., Molenaar, J. J., Mosse, Y. P., Nakagawara, A., et al. (2017). Retinoblastoma and neuroblastoma predisposition and surveillance. Clinical Cancer Research, 23(13), e98–e106.  https://doi.org/10.1158/1078-0432.CCR-17-0652.CrossRefPubMedGoogle Scholar
  41. 41.
    Lasorsa, V. A., Formicola, D., Pignataro, P., Cimmino, F., Calabrese, F. M., Mora, J., et al. (2016). Exome and deep sequencing of clinically aggressive neuroblastoma reveal somatic mutations that affect key pathways involved in cancer progression. Oncotarget, 7(16), 21840–21852.  https://doi.org/10.18632/oncotarget.8187.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Esposito, M. R., Binatti, A., Pantile, M., Coppe, A., Mazzocco, K., Longo, L., Capasso, M., Lasorsa, V. A., Luksch, R., Bortoluzzi, S., & Tonini, G. P. (2018). Somatic mutations in specific and connected subpathways are associated with short neuroblastoma patients’ survival and indicate proteins targetable at onset of disease. International Journal of Cancer, 143(10), 2525–2536.  https://doi.org/10.1002/ijc.31748.CrossRefPubMedGoogle Scholar
  43. 43.
    Pugh, T. J., Morozova, O., Attiyeh, E. F., Asgharzadeh, S., Wei, J. S., Auclair, D., Carter, S. L., Cibulskis, K., Hanna, M., Kiezun, A., Kim, J., Lawrence, M. S., Lichenstein, L., McKenna, A., Pedamallu, C. S., Ramos, A. H., Shefler, E., Sivachenko, A., Sougnez, C., Stewart, C., Ally, A., Birol, I., Chiu, R., Corbett, R. D., Hirst, M., Jackman, S. D., Kamoh, B., Khodabakshi, A. H., Krzywinski, M., Lo, A., Moore, R. A., Mungall, K. L., Qian, J., Tam, A., Thiessen, N., Zhao, Y., Cole, K. A., Diamond, M., Diskin, S. J., Mosse, Y. P., Wood, A. C., Ji, L., Sposto, R., Badgett, T., London, W. B., Moyer, Y., Gastier-Foster, J. M., Smith, M. A., Guidry Auvil, J. M., Gerhard, D. S., Hogarty, M. D., Jones, S. J., Lander, E. S., Gabriel, S. B., Getz, G., Seeger, R. C., Khan, J., Marra, M. A., Meyerson, M., & Maris, J. M. (2013). The genetic landscape of high-risk neuroblastoma. Nature Genetics, 45(3), 279–284.  https://doi.org/10.1038/ng.2529.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Parsons, D. W., Roy, A., Yang, Y., Wang, T., Scollon, S., Bergstrom, K., et al. (2016). Diagnostic yield of clinical tumor and germline whole-exome sequencing for children with solid tumors. JAMA Oncology, 2(5), 616–624.  https://doi.org/10.1001/jamaoncol.2015.5699.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Diskin, S. J., Capasso, M., Diamond, M., Oldridge, D. A., Conkrite, K., Bosse, K. R., et al. (2014). Rare variants in TP53 and susceptibility to neuroblastoma. Journal of the National Cancer Institute, 106(4), dju047.  https://doi.org/10.1093/jnci/dju047.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Origone, P., Defferrari, R., Mazzocco, K., Lo Cunsolo, C., De Bernardi, B., & Tonini, G. P. (2003). Homozygous inactivation of NF1 gene in a patient with familial NF1 and disseminated neuroblastoma. American Journal of Medical Genetics. Part A, 118A(4), 309–313.  https://doi.org/10.1002/ajmg.a.10167.CrossRefPubMedGoogle Scholar
  47. 47.
    Mutesa, L., Pierquin, G., Janin, N., Segers, K., Thomee, C., Provenzi, M., et al. (2008). Germline PTPN11 missense mutation in a case of Noonan syndrome associated with mediastinal and retroperitoneal neuroblastic tumors. Cancer Genetics and Cytogenetics, 182(1), 40–42.  https://doi.org/10.1016/j.cancergencyto.2007.12.005.CrossRefPubMedGoogle Scholar
  48. 48.
    Kratz, C. P., Rapisuwon, S., Reed, H., Hasle, H., & Rosenberg, P. S. (2011). Cancer in Noonan, Costello, cardiofaciocutaneous and LEOPARD syndromes. American Journal of Medical Genetics. Part C, Seminars in Medical Genetics, 157C(2), 83–89.  https://doi.org/10.1002/ajmg.c.30300.CrossRefPubMedGoogle Scholar
  49. 49.
    Birch, J. M., Alston, R. D., McNally, R. J., Evans, D. G., Kelsey, A. M., Harris, M., et al. (2001). Relative frequency and morphology of cancers in carriers of germline TP53 mutations. Oncogene, 20(34), 4621–4628.  https://doi.org/10.1038/sj.onc.1204621.CrossRefPubMedGoogle Scholar
  50. 50.
    Tatton-Brown, K., Murray, A., Hanks, S., Douglas, J., Armstrong, R., Banka, S., Bird, L. M., Clericuzio, C. L., Cormier-Daire, V., Cushing, T., Flinter, F., Jacquemont, M. L., Joss, S., Kinning, E., Lynch, S. A., Magee, A., McConnell, V., Medeira, A., Ozono, K., Patton, M., Rankin, J., Shears, D., Simon, M., Splitt, M., Strenger, V., Stuurman, K., Taylor, C., Titheradge, H., van Maldergem, L., Temple, I. K., Cole, T., Seal, S., Childhood Overgrowth Consortium, & Rahman, N. (2013). Weaver syndrome and EZH2 mutations: clarifying the clinical phenotype. American Journal of Medical Genetics. Part A, 161A(12), 2972–2980.  https://doi.org/10.1002/ajmg.a.36229.CrossRefPubMedGoogle Scholar
  51. 51.
    Schimke, R. N., Collins, D. L., & Stolle, C. A. (2010). Paraganglioma, neuroblastoma, and a SDHB mutation: resolution of a 30-year-old mystery. American Journal of Medical Genetics. Part A, 152A(6), 1531–1535.  https://doi.org/10.1002/ajmg.a.33384.CrossRefPubMedGoogle Scholar
  52. 52.
    Maas, S. M., Vansenne, F., Kadouch, D. J., Ibrahim, A., Bliek, J., Hopman, S., Mannens, M. M., Merks, J. H., Maher, E. R., & Hennekam, R. C. (2016). Phenotype, cancer risk, and surveillance in Beckwith-Wiedemann syndrome depending on molecular genetic subgroups. American Journal of Medical Genetics. Part A, 170(9), 2248–2260.  https://doi.org/10.1002/ajmg.a.37801.CrossRefPubMedGoogle Scholar
  53. 53.
    Ozcan, A., Acer, H., Ciraci, S., Gumus, H., Karakukcu, M., Patiroglu, T., et al. (2017). Neuroblastoma in a child with Wolf-Hirschhorn syndrome. Journal of Pediatric Hematology/Oncology, 39(4), e224–e226.  https://doi.org/10.1097/MPH.0000000000000768.CrossRefPubMedGoogle Scholar
  54. 54.
    Maris, J. M., Mosse, Y. P., Bradfield, J. P., Hou, C., Monni, S., Scott, R. H., et al. (2008). Chromosome 6p22 locus associated with clinically aggressive neuroblastoma. The New England Journal of Medicine, 358(24), 2585–2593.  https://doi.org/10.1056/NEJMoa0708698.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Russell, M. R., Penikis, A., Oldridge, D. A., Alvarez-Dominguez, J. R., McDaniel, L., Diamond, M., Padovan, O., Raman, P., Li, Y., Wei, J. S., Zhang, S., Gnanchandran, J., Seeger, R., Asgharzadeh, S., Khan, J., Diskin, S. J., Maris, J. M., & Cole, K. A. (2015). CASC15-S is a tumor suppressor lncRNA at the 6p22 neuroblastoma susceptibility locus. Cancer Research, 75(15), 3155–3166.  https://doi.org/10.1158/0008-5472.CAN-14-3613.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Capasso, M., Diskin, S. J., Totaro, F., Longo, L., De Mariano, M., Russo, R., et al. (2013). Replication of GWAS-identified neuroblastoma risk loci strengthens the role of BARD1 and affirms the cumulative effect of genetic variations on disease susceptibility. Carcinogenesis, 34(3), 605–611.  https://doi.org/10.1093/carcin/bgs380.CrossRefPubMedGoogle Scholar
  57. 57.
    Zhang, J., Zhuo, Z. J., Wang, J., He, J., Yang, L., Zhang, D., et al. (2017). CASC15 gene polymorphisms reduce neuroblastoma risk in Chinese children. Oncotarget, 8(53), 91343–91349.  https://doi.org/10.18632/oncotarget.20514.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Pandey, G. K., Mitra, S., Subhash, S., Hertwig, F., Kanduri, M., Mishra, K., Fransson, S., Ganeshram, A., Mondal, T., Bandaru, S., Ostensson, M., Akyürek, L. M., Abrahamsson, J., Pfeifer, S., Larsson, E., Shi, L., Peng, Z., Fischer, M., Martinsson, T., Hedborg, F., Kogner, P., & Kanduri, C. (2014). The risk-associated long noncoding RNA NBAT-1 controls neuroblastoma progression by regulating cell proliferation and neuronal differentiation. Cancer Cell, 26(5), 722–737.  https://doi.org/10.1016/j.ccell.2014.09.014.CrossRefPubMedGoogle Scholar
  59. 59.
    Mondal, T., Juvvuna, P. K., Kirkeby, A., Mitra, S., Kosalai, S. T., Traxler, L., Hertwig, F., Wernig-Zorc, S., Miranda, C., Deland, L., Volland, R., Bartenhagen, C., Bartsch, D., Bandaru, S., Engesser, A., Subhash, S., Martinsson, T., Carén, H., Akyürek, L. M., Kurian, L., Kanduri, M., Huarte, M., Kogner, P., Fischer, M., & Kanduri, C. (2018). Sense-antisense lncRNA pair encoded by locus 6p22.3 determines neuroblastoma susceptibility via the USP36-CHD7-SOX9 regulatory axis. Cancer Cell, 33(3), 417–434 e417.  https://doi.org/10.1016/j.ccell.2018.01.020.CrossRefPubMedGoogle Scholar
  60. 60.
    Capasso, M., Devoto, M., Hou, C., Asgharzadeh, S., Glessner, J. T., Attiyeh, E. F., Mosse, Y. P., Kim, C., Diskin, S. J., Cole, K. A., Bosse, K., Diamond, M., Laudenslager, M., Winter, C., Bradfield, J. P., Scott, R. H., Jagannathan, J., Garris, M., McConville, C., London, W. B., Seeger, R. C., Grant, S. F., Li, H., Rahman, N., Rappaport, E., Hakonarson, H., & Maris, J. M. (2009). Common variations in BARD1 influence susceptibility to high-risk neuroblastoma. Nature Genetics, 41(6), 718–723.  https://doi.org/10.1038/ng.374.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Latorre, V., Diskin, S. J., Diamond, M. A., Zhang, H., Hakonarson, H., Maris, J. M., & Devoto, M. (2012). Replication of neuroblastoma SNP association at the BARD1 locus in African-Americans. Cancer Epidemiology, Biomarkers & Prevention, 21(4), 658–663.  https://doi.org/10.1158/1055-9965.EPI-11-0830.CrossRefGoogle Scholar
  62. 62.
    Zhang, R., Zou, Y., Zhu, J., Zeng, X., Yang, T., Wang, F., He, J., & Xia, H. (2016). The association between GWAS-identified BARD1 gene SNPs and neuroblastoma susceptibility in a southern Chinese population. International Journal of Medical Sciences, 13(2), 133–138.  https://doi.org/10.7150/ijms.13426.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Cimmino, F., Avitabile, M., Diskin, S. J., Vaksman, Z., Pignataro, P., Formicola, D., Cardinale, A., Testori, A., Koster, J., de Torres, C., Devoto, M., Maris, J. M., Iolascon, A., & Capasso, M. (2018). Fine mapping of 2q35 high-risk neuroblastoma locus reveals independent functional risk variants and suggests full-length BARD1 as tumor-suppressor. International Journal of Cancer, 143(11), 2828–2837.  https://doi.org/10.1002/ijc.31822.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Oldridge, D. A., Truong, B., Russ, D., DuBois, S. G., Vaksman, Z., Mosse, Y. P., et al. (2019). Differences in genomic profiles and outcomes between thoracic and adrenal neuroblastoma. Journal of the National Cancer Institute.  https://doi.org/10.1093/jnci/djz027.CrossRefGoogle Scholar
  65. 65.
    Cimmino, F., Formicola, D., & Capasso, M. (2017). Dualistic role of BARD1 in cancer. Genes (Basel), 8(12).  https://doi.org/10.3390/genes8120375.CrossRefGoogle Scholar
  66. 66.
    Bosse, K. R., Diskin, S. J., Cole, K. A., Wood, A. C., Schnepp, R. W., Norris, G., Nguyen le, B., Jagannathan, J., Laquaglia, M., Winter, C., Diamond, M., Hou, C., Attiyeh, E. F., Mosse, Y. P., Pineros, V., Dizin, E., Zhang, Y., Asgharzadeh, S., Seeger, R. C., Capasso, M., Pawel, B. R., Devoto, M., Hakonarson, H., Rappaport, E. F., Irminger-Finger, I., & Maris, J. M. (2012). Common variation at BARD1 results in the expression of an oncogenic isoform that influences neuroblastoma susceptibility and oncogenicity. Cancer Research, 72(8), 2068–2078.  https://doi.org/10.1158/0008-5472.CAN-11-3703.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Wang, K., Diskin, S. J., Zhang, H., Attiyeh, E. F., Winter, C., Hou, C., Schnepp, R. W., Diamond, M., Bosse, K., Mayes, P. A., Glessner, J., Kim, C., Frackelton, E., Garris, M., Wang, Q., Glaberson, W., Chiavacci, R., Nguyen, L., Jagannathan, J., Saeki, N., Sasaki, H., Grant, S. F., Iolascon, A., Mosse, Y. P., Cole, K. A., Li, H., Devoto, M., McGrady, P., London, W. B., Capasso, M., Rahman, N., Hakonarson, H., & Maris, J. M. (2011). Integrative genomics identifies LMO1 as a neuroblastoma oncogene. Nature, 469(7329), 216–220.  https://doi.org/10.1038/nature09609.CrossRefPubMedGoogle Scholar
  68. 68.
    He, L., Zhu, J., Han, F., Tang, Y., Zhou, C., Dai, J., Wang, Y., Zhou, H., He, J., & Wu, H. (2018). LMO1 gene polymorphisms reduce neuroblastoma risk in eastern Chinese children: a three-center case-control study. Frontiers in Oncology, 8, 468.  https://doi.org/10.3389/fonc.2018.00468.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Matthews, J. M., Lester, K., Joseph, S., & Curtis, D. J. (2013). LIM-domain-only proteins in cancer. Nature Reviews. Cancer, 13(2), 111–122.  https://doi.org/10.1038/nrc3418.CrossRefPubMedGoogle Scholar
  70. 70.
    Zhu, S., Zhang, X., Weichert-Leahey, N., Dong, Z., Zhang, C., Lopez, G., Tao, T., He, S., Wood, A. C., Oldridge, D., Ung, C. Y., van Ree, J., Khan, A., Salazar, B. M., Lummertz da Rocha, E., Zimmerman, M. W., Guo, F., Cao, H., Hou, X., Weroha, S. J., Perez-Atayde, A. R., Neuberg, D. S., Meves, A., McNiven, M., van Deursen, J., Li, H., Maris, J. M., & Look, A. T. (2017). LMO1 synergizes with MYCN to promote neuroblastoma initiation and metastasis. Cancer Cell, 32(3), 310–323 e315.  https://doi.org/10.1016/j.ccell.2017.08.002.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Oldridge, D. A., Wood, A. C., Weichert-Leahey, N., Crimmins, I., Sussman, R., Winter, C., McDaniel, L., Diamond, M., Hart, L. S., Zhu, S., Durbin, A. D., Abraham, B. J., Anders, L., Tian, L., Zhang, S., Wei, J. S., Khan, J., Bramlett, K., Rahman, N., Capasso, M., Iolascon, A., Gerhard, D. S., Guidry Auvil, J. M., Young, R. A., Hakonarson, H., Diskin, S. J., Look, A. T., & Maris, J. M. (2015). Genetic predisposition to neuroblastoma mediated by a LMO1 super-enhancer polymorphism. Nature, 528(7582), 418–421.  https://doi.org/10.1038/nature15540.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Diskin, S. J., Capasso, M., Schnepp, R. W., Cole, K. A., Attiyeh, E. F., Hou, C., Diamond, M., Carpenter, E. L., Winter, C., Lee, H., Jagannathan, J., Latorre, V., Iolascon, A., Hakonarson, H., Devoto, M., & Maris, J. M. (2012). Common variation at 6q16 within HACE1 and LIN28B influences susceptibility to neuroblastoma. Nature Genetics, 44(10), 1126–1130.  https://doi.org/10.1038/ng.2387.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    He, J., Yang, T., Zhang, R., Zhu, J., Wang, F., Zou, Y., & Xia, H. (2016). Potentially functional polymorphisms in the LIN28B gene contribute to neuroblastoma susceptibility in Chinese children. Journal of Cellular and Molecular Medicine, 20(8), 1534–1541.  https://doi.org/10.1111/jcmm.12846.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Powers, J. T., Tsanov, K. M., Pearson, D. S., Roels, F., Spina, C. S., Ebright, R., Seligson, M., de Soysa, Y., Cahan, P., Theißen, J., Tu, H. C., Han, A., Kurek, K. C., LaPier, G., Osborne, J. K., Ross, S. J., Cesana, M., Collins, J. J., Berthold, F., & Daley, G. Q. (2016). Multiple mechanisms disrupt the let-7 microRNA family in neuroblastoma. Nature, 535(7611), 246–251.  https://doi.org/10.1038/nature18632.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Schnepp, R. W., Khurana, P., Attiyeh, E. F., Raman, P., Chodosh, S. E., Oldridge, D. A., Gagliardi, M. E., Conkrite, K. L., Asgharzadeh, S., Seeger, R. C., Madison, B. B., Rustgi, A. K., Maris, J. M., & Diskin, S. J. (2015). A LIN28B-RAN-AURKA signaling network promotes neuroblastoma tumorigenesis. Cancer Cell, 28(5), 599–609.  https://doi.org/10.1016/j.ccell.2015.09.012.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Molenaar, J. J., Domingo-Fernandez, R., Ebus, M. E., Lindner, S., Koster, J., Drabek, K., et al. (2012). LIN28B induces neuroblastoma and enhances MYCN levels via let-7 suppression. Nature Genetics, 44(11), 1199–1206.  https://doi.org/10.1038/ng.2436.CrossRefPubMedGoogle Scholar
  77. 77.
    Corallo, D., Donadon, M., Pantile, M., Sidarovich, V., Cocchi, S., Ori, M., de Sarlo, M., Candiani, S., Frasson, C., Distel, M., Quattrone, A., Zanon, C., Basso, G., Tonini, G. P., & Aveic, S. (2019). LIN28B increases neural crest cell migration and leads to transformation of trunk sympathoadrenal precursors. Cell Death and Differentiation, 1–18.  https://doi.org/10.1038/s41418-019-0425-3.
  78. 78.
    Capasso, M., Calabrese, F. M., Iolascon, A., & Mellerup, E. (2014). Combinations of genetic data in a study of neuroblastoma risk genotypes. Cancer Genetics, 207(3), 94–97.  https://doi.org/10.1016/j.cancergen.2014.02.004.CrossRefPubMedGoogle Scholar
  79. 79.
    McDaniel, L. D., Conkrite, K. L., Chang, X., Capasso, M., Vaksman, Z., Oldridge, D. A., et al. (2017). Common variants upstream of MLF1 at 3q25 and within CPZ at 4p16 associated with neuroblastoma. PLoS Genetics, 13(5), e1006787.  https://doi.org/10.1371/journal.pgen.1006787.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Tang, J., Liu, W., Zhu, J., Zhang, J., Wang, F. H., Liang, J. H., Zeng, J. H., Wang, H., Xia, H., & He, J. (2018). RSRC1 and CPZ gene polymorphisms with neuroblastoma susceptibility in Chinese children. Gene, 662, 83–87.  https://doi.org/10.1016/j.gene.2018.04.015.CrossRefPubMedGoogle Scholar
  81. 81.
    Nguyen le, B., Diskin, S. J., Capasso, M., Wang, K., Diamond, M. A., Glessner, J., et al. (2011). Phenotype restricted genome-wide association study using a gene-centric approach identifies three low-risk neuroblastoma susceptibility loci. PLoS Genetics, 7(3), e1002026.  https://doi.org/10.1371/journal.pgen.1002026.CrossRefPubMedGoogle Scholar
  82. 82.
    Zhang, Z., Zou, Y., Zhu, J., Zhang, R., Yang, T., Wang, F., Xia, H., He, J., & Feng, Z. (2017). HSD17B12 gene rs11037575 C>T polymorphism confers neuroblastoma susceptibility in a southern Chinese population. Onco Targets Ther, 10, 1969–1975.  https://doi.org/10.2147/OTT.S136006.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Gamazon, E. R., Pinto, N., Konkashbaev, A., Im, H. K., Diskin, S. J., London, W. B., Maris, J. M., Dolan, M. E., Cox, N. J., & Cohn, S. L. (2013). Trans-population analysis of genetic mechanisms of ethnic disparities in neuroblastoma survival. Journal of the National Cancer Institute, 105(4), 302–309.  https://doi.org/10.1093/jnci/djs503.CrossRefPubMedGoogle Scholar
  84. 84.
    Capasso, M., Diskin, S., Cimmino, F., Acierno, G., Totaro, F., Petrosino, G., Pezone, L., Diamond, M., McDaniel, L., Hakonarson, H., Iolascon, A., Devoto, M., & Maris, J. M. (2014). Common genetic variants in NEFL influence gene expression and neuroblastoma risk. Cancer Research, 74(23), 6913–6924.  https://doi.org/10.1158/0008-5472.CAN-14-0431.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Capasso, M., McDaniel, L. D., Cimmino, F., Cirino, A., Formicola, D., Russell, M. R., et al. (2017). The functional variant rs34330 of CDKN1B is associated with risk of neuroblastoma. Journal of Cellular and Molecular Medicine, 21(12), 3224–3230.  https://doi.org/10.1111/jcmm.13226.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Chang, X., Zhao, Y., Hou, C., Glessner, J., McDaniel, L., Diamond, M. A., et al. (2017). Common variants in MMP20 at 11q22.2 predispose to 11q deletion and neuroblastoma risk. Nature Communications, 8(1), 569.  https://doi.org/10.1038/s41467-017-00408-8.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Hungate, E. A., Applebaum, M. A., Skol, A. D., Vaksman, Z., Diamond, M., McDaniel, L., Volchenboum, S. L., Stranger, B. E., Maris, J. M., Diskin, S. J., Onel, K., & Cohn, S. L. (2017). Evaluation of genetic predisposition for MYCN-amplified neuroblastoma. Journal of the National Cancer Institute, 109(10).  https://doi.org/10.1093/jnci/djx093.
  88. 88.
    Testori, A., Lasorsa, V. A., Cimmino, F., Cantalupo, S., Cardinale, A., Avitabile, M., Limongelli, G., Russo, M. G., Diskin, S., Maris, J., Devoto, M., Keavney, B., Cordell, H. J., Iolascon, A., & Capasso, M. (2019). Exploring shared susceptibility between two neural crest cells originating conditions: neuroblastoma and congenital heart disease. Genes (Basel), 10(9).  https://doi.org/10.3390/genes10090663.CrossRefGoogle Scholar
  89. 89.
    Avitabile, M., Succoio, M., Testori, A., Cardinale, A., Vaksman, Z., Lasorsa, V. A., et al. (2019). Neural crest-derived tumor neuroblastoma and melanoma share 1p13.2 as susceptibility locus that shows a long-range interaction with the SLC16A1 gene. Carcinogenesis.  https://doi.org/10.1093/carcin/bgz153.
  90. 90.
    Egolf, L. E., Vaksman, Z., Lopez, G., Rokita, J. L., Modi, A., Basta, P. V., Hakonarson, H., Olshan, A. F., & Diskin, S. J. (2019). Germline 16p11.2 microdeletion predisposes to neuroblastoma. American Journal of Human Genetics, 105(3), 658–668.  https://doi.org/10.1016/j.ajhg.2019.07.020.CrossRefPubMedGoogle Scholar
  91. 91.
    Gambale, A., Russo, R., Andolfo, I., Quaglietta, L., De Rosa, G., Contestabile, V., et al. (2019). Germline mutations and new copy number variants among 40 pediatric cancer patients suspected for genetic predisposition. Clinical Genetics, 96(4), 359–365.  https://doi.org/10.1111/cge.13600.CrossRefPubMedGoogle Scholar
  92. 92.
    Tsubota, S., & Kadomatsu, K. (2018). Origin and initiation mechanisms of neuroblastoma. Cell and Tissue Research, 372(2), 211–221.  https://doi.org/10.1007/s00441-018-2796-z.CrossRefPubMedGoogle Scholar
  93. 93.
    Johnsen, J. I., Dyberg, C., & Wickstrom, M. (2019). Neuroblastoma-a neural crest derived embryonal malignancy. Frontiers in Molecular Neuroscience, 12, 9.  https://doi.org/10.3389/fnmol.2019.00009.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Esposito, M. R., Aveic, S., Seydel, A., & Tonini, G. P. (2017). Neuroblastoma treatment in the post-genomic era. Journal of Biomedical Science, 24(1), 14.  https://doi.org/10.1186/s12929-017-0319-y.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Franke, F., Rudolph, B., Christiansen, H., Harbott, J., & Lampert, F. (1986). Tumour karyotype may be important in the prognosis of human neuroblastoma. Journal of Cancer Research and Clinical Oncology, 111(3), 266–272.  https://doi.org/10.1007/bf00389243.CrossRefPubMedGoogle Scholar
  96. 96.
    Schwab, M., Alitalo, K., Klempnauer, K. H., Varmus, H. E., Bishop, J. M., Gilbert, F., et al. (1983). Amplified DNA with limited homology to myc cellular oncogene is shared by human neuroblastoma cell lines and a neuroblastoma tumour. Nature, 305(5931), 245–248.  https://doi.org/10.1038/305245a0.CrossRefPubMedGoogle Scholar
  97. 97.
    Brodeur, G. M., Green, A. A., Hayes, F. A., Williams, K. J., Williams, D. L., & Tsiatis, A. A. (1981). Cytogenetic features of human neuroblastomas and cell lines. Cancer Research, 41(11 Pt 1), 4678–4686.PubMedGoogle Scholar
  98. 98.
    Brodeur, G. M., Seeger, R. C., Schwab, M., Varmus, H. E., & Bishop, J. M. (1984). Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science, 224(4653), 1121–1124.  https://doi.org/10.1126/science.6719137.CrossRefPubMedGoogle Scholar
  99. 99.
    Attiyeh, E. F., London, W. B., Mosse, Y. P., Wang, Q., Winter, C., Khazi, D., et al. (2005). Chromosome 1p and 11q deletions and outcome in neuroblastoma. The New England Journal of Medicine, 353(21), 2243–2253.  https://doi.org/10.1056/NEJMoa052399.CrossRefPubMedGoogle Scholar
  100. 100.
    Thompson, P. M., Seifried, B. A., Kyemba, S. K., Jensen, S. J., Guo, C., Maris, J. M., et al. (2001). Loss of heterozygosity for chromosome 14q in neuroblastoma. Medical and Pediatric Oncology, 36(1), 28–31.  https://doi.org/10.1002/1096-911X(20010101)36:1<28::AID-MPO1008>3.0.CO;2-0.CrossRefPubMedGoogle Scholar
  101. 101.
    Scaruffi, P., Coco, S., Cifuentes, F., Albino, D., Nair, M., Defferrari, R., Mazzocco, K., & Tonini, G. P. (2007). Identification and characterization of DNA imbalances in neuroblastoma by high-resolution oligonucleotide array comparative genomic hybridization. Cancer Genetics and Cytogenetics, 177(1), 20–29.  https://doi.org/10.1016/j.cancergencyto.2007.05.002.CrossRefPubMedGoogle Scholar
  102. 102.
    Schleiermacher, G., Mosseri, V., London, W. B., Maris, J. M., Brodeur, G. M., Attiyeh, E., Haber, M., Khan, J., Nakagawara, A., Speleman, F., Noguera, R., Tonini, G. P., Fischer, M., Ambros, I., Monclair, T., Matthay, K. K., Ambros, P., Cohn, S. L., & Pearson, A. D. (2012). Segmental chromosomal alterations have prognostic impact in neuroblastoma: a report from the INRG project. British Journal of Cancer, 107(8), 1418–1422.  https://doi.org/10.1038/bjc.2012.375.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Stigliani, S., Coco, S., Moretti, S., Oberthuer, A., Fischer, M., Theissen, J., Gallo, F., Garavent, A., Berthold, F., Bonassi, S., Tonini, G. P., & Scaruffi, P. (2012). High genomic instability predicts survival in metastatic high-risk neuroblastoma. Neoplasia, 14(9), 823–832.  https://doi.org/10.1593/neo.121114.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Fusco, P., Esposito, M. R., & Tonini, G. P. (2018). Chromosome instability in neuroblastoma. Oncology Letters, 16(6), 6887–6894.  https://doi.org/10.3892/ol.2018.9545.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Vanneste, E., Voet, T., Le Caignec, C., Ampe, M., Konings, P., Melotte, C., et al. (2009). Chromosome instability is common in human cleavage-stage embryos. Nature Medicine, 15(5), 577–583.  https://doi.org/10.1038/nm.1924.CrossRefPubMedGoogle Scholar
  106. 106.
    Coco, S., Theissen, J., Scaruffi, P., Stigliani, S., Moretti, S., Oberthuer, A., Valdora, F., Fischer, M., Gallo, F., Hero, B., Bonassi, S., Berthold, F., & Tonini, G. P. (2012). Age-dependent accumulation of genomic aberrations and deregulation of cell cycle and telomerase genes in metastatic neuroblastoma. International Journal of Cancer, 131(7), 1591–1600.  https://doi.org/10.1002/ijc.27432.CrossRefPubMedGoogle Scholar
  107. 107.
    Tonini, G. P. (2017). Growth, progression and chromosome instability of neuroblastoma: a new scenario of tumorigenesis? BMC Cancer, 17(1), 20.  https://doi.org/10.1186/s12885-016-2986-6.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Ikeda, Y., Lister, J., Bouton, J. M., & Buyukpamukcu, M. (1981). Congenital neuroblastoma, neuroblastoma in situ, and the normal fetal development of the adrenal. Journal of Pediatric Surgery, 16(4 Suppl 1), 636–644.  https://doi.org/10.1016/0022-3468(81)90019-1.CrossRefPubMedGoogle Scholar
  109. 109.
    Janoueix-Lerosey, I., Schleiermacher, G., Michels, E., Mosseri, V., Ribeiro, A., Lequin, D., Vermeulen, J., Couturier, J., Peuchmaur, M., Valent, A., Plantaz, D., Rubie, H., Valteau-Couanet, D., Thomas, C., Combaret, V., Rousseau, R., Eggert, A., Michon, J., Speleman, F., & Delattre, O. (2009). Overall genomic pattern is a predictor of outcome in neuroblastoma. Journal of Clinical Oncology, 27(7), 1026–1033.  https://doi.org/10.1200/JCO.2008.16.0630.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Neuroblastoma Laboratory, Pediatric Research InstituteCittà della SperanzaPadovaItaly
  2. 2.Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniveristà degli Studi di Napoli Federico IINaplesItaly
  3. 3.CEINGE Biotecnologie AvanzateNaplesItaly

Personalised recommendations